DEVELOPMENT IN WAVE FUNCTION METHODS MADE
EASY

WITH IRPF90 AND THE QUANTUM PACKAGE

Anthony Scemama
07/02/2019

Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

ISSUE

- Scientific codes need speed = : Fortran / C / C++

- Low-level languages : close to the hardware = difficult
to maintain

- High-level features of modern Fortran (array syntax,
derived types, ...) or C++ (objects, STL) can kill the efficiency

We need to hide the code complexity and keep the code
efficient.

ISSUE

A simple solution : use multiple languages.

- Low-level : computation
- High-level : text parsing, global code architecture, ...
- Python + (NumPy, f2py, SymPy)
- Horton, PySCF
- Psi4
- Meta-programming : generate low-level code with a
higher-level language

- FFTW: C generated by an OCaml program
- libcint: C generated by a Common Lisp program

Problem addressed here

Make code in the low-level language easy to write and maintain

OUTLINE

Programming with Implicit Reference to Parameters (IRP)

Motivations
Time-dependence

Complexity of the production tree
The IRP method
The IRPF90 code generator

Quantum Package

PROGRAMMING WITH IMPLICIT REFER-
ENCE TO PARAMETERS (IRP)

OUTLINE

Programming with Implicit Reference to Parameters (IRP)

Motivations

WHAT IS A SCIENTIFIC CODE?

A (scientific) program is a function of its input data:

output = program(input)
A program can be represented as a production tree where

- The root is the output
- The leaves are the input data
- The nodes are the intermediate variables

- The edges represent the relation needs/needed by

WHAT IS A SCIENTIFIC CODE?

Example: Production tree of t(u(ch, d>), v(u(d3, ds), W(d5))>

uix,y) = x+y+1 ° °
v(X,y) = Xx+y+2

wix) = x+3 () & ¢
t(x,y) = x+y+4

TRADITIONAL FORTRAN IMPLEMENTATION

program compute_t
implicit none
integer :: d1, d2, d3, d4 45

integer :: u, v, w, t
call read_data(dl,d2,d3,d4,d5) ! t
! / \
call compute_u(d3,d4,u) ! U)
call compute_w(d5,w) s [\
call compute_v(u,w,v) ! d1 d2 U w
call compute_u(dl,d2,u) ! / \ \
call compute_t(u,v,t) ! a3 d4 a5

write(x,*), "t=", t

end program

DIFFICULTIES

Imperative programming (wikipedia)

[...] programming paradigm that uses statements that change a
program'’s state.

- The code expresses the exploration of the production tree
- The routines have to be called in the correct order

- The values of variables are time-dependent

10

TRADITIONAL FORTRAN IMPLEMENTATION

program compute_t
implicit none
integer :: d1, d2, d3, d4 45

integer :: u, v, w, t
call read_data(dl,d2,d3,d4,d5) ! t
! / \
call compute_u(d3,d4, u) ! U)
call compute_w(d5,w) P/ \
call compute_v(u ,w,v) ! d1 d2 U w
call compute_u(dl,d2, u) ! / \ \
call compute_t(u ,v,t) ! a3 d4 a5

write(x,*), "t=", t

end program

"

CONSEQUENCES

Sources of complexity

1. Time-dependence of the data (mutable data)
2. Handling the complexity of the production tree

12

TIME-DEPENDENCE

Functional programming (wikipedia)

[...] programming paradigm [..] that treats computation as the
evaluation of mathematical functions and avoids changing-state
and mutable data.

No time-dependence (immutable data) = reduced
complexity

13

"FUNCTIONAL” IMPLEMENTATION IN FORTRAN

program compute_t ! t
implicit nomne ! / \
integer :: d1, d2, d3, d4 d5 ! U v
integer :: u, v, w, t A /\
! a1 a2 U w
call read_data(d1,d2,d3,d4,d5) ! /0 \
! a3 d4 as

! Functional starts here
write(*,*), "t=", t(u(d1l,d2), v(u(d3,d4), w(d5)))

end program

- Instead of telling what to do, we express what we want
- The programmer doesn’t handle the execution sequence

No time-dependence left

14

COMPLEXITY OF THE PRODUCTION TREE

Production tree of W in QMC=Chem: 149 nodes / 689 edges

15

COMPLEXITY OF THE PRODUCTION TREE

1. The programmers need to have the global knowledge of
the production tree : Production trees are usually too
complex to be handled by humans

2. Programmers may not be sure that their modification did
not break some other part

3. Collaborative work is difficult : any programmer can alter
the production tree (accidentally or not)

FROM GLOBAL TO LOCAL KNOWLEDGE

Express the needed
entities for each node: °

- t—ujandv °¢

* U —>d1 and dz

v andw =5 0D @D

. U2—>d3 and d4

'W—>d5 e@e

The information is now [ocal and easy to handle.

LOCALIZE INFORMATION

Let us rewrite:

t(u(cﬂ, d2), v(u(d3,d4), w(d5))>

C:D
X+y+1 ° @
X+y+2

X+3 Ca) O D (&
X+y+h
OOy

LOCALIZE INFORMATION

program compute_t
integer, external :: t
write(*,*), "t=", t()

end program

integer function t()

integer, external :: ul, v
t=ul() + v + 4

end

integer function v()
integer, external :: u2, w

v =u2() +w(Q + 2
end

integer function w()
integer :: d1,d2,d3,d4,d5
call read_data(d1,d2,d3,d4,d5)
w = db+3

end

integer function f_u(x,y)
integer, intent(in) :: x,y
f_u = x+y+1l

end

integer function ul()

d1,d2,d3,d4,d5
integer, external :: f_u
call read_data(d1,d2,d3,d4,d5)
ul = f_u(d1,d2)

end

integer ::

integer function u2()
d1,d2,d3,d4,d5
integer, external :: f_u

call read_data(d1,d2,d3,d4,d5)
u2 = f_u(d3,d4)

end

integer ::

19

CONSEQUENCES

- The global production tree is not known by the
programmer

- The program is easy to write (mechanical)

- Any change of dependencies will be handled properly
automatically

20

CONSEQUENCES

- The global production tree is not known by the
programmer

- The program is easy to write (mechanical)

- Any change of dependencies will be handled properly
automatically

But: The same data may be recomputed multiple times.

20

CONSEQUENCES

- The global production tree is not known by the
programmer

- The program is easy to write (mechanical)

- Any change of dependencies will be handled properly
automatically

But: The same data may be recomputed multiple times.

Simple solution : Lazy evaluation using memo functions.

20

OUTLINE

Programming with Implicit Reference to Parameters (IRP)

The IRP method

21

GLOSSARY

Entity Node of the production tree
Valid Fully initialized with meaningful values
Builder Subroutine that builds a valid value of an entity
from its dependencies
Provider Subroutine with no argument which guarantees to
return a valid value of an entity

Rules of IRP'

1. Each entity has only one provider
2. Before using an entity, its provider has to be called

"Francois Colonna : "IRP programming : an efficient way to reduce
inter-module coupling ", DOI: 1013140/RG.21.3833.0406

22

IRP EXAMPLE

program test

use entities

implicit

none

call provide_t

print *,

end program

ng=" ¢

module entities

! Entities
integer ::
logical
logical
logical
logical
logical

! Leaves
integer ::
logical

end module

ul, v2, v, w, t

:: ul_is_built
:: u2_is_built
:: v_is_built
:: w_is_built
: t_is_built

d1, 42, 43,

:: d_is_built

= .False.

d4, d5

= .False.

.False.
.False.
.False.
= .False.

subroutine provide_t

use entities

implicit none

if (.not.t_is_built) then
call provide_ul
call provide_v
call build_t(ul,v,t)
t_is_built = .True.

end if

end subroutine provide_t

subroutine build_t(x,y,result)
implicit none
integer, intent(in) :: x, y
integer, intent(out) :: result
result = x +y + 4

end subroutine build_t

23

SUMMARY

With the IRP method:

1. Code is easy to develop for a new developer : Adding a
new feature only requires to know the names of the
needed entities

2. If one developer changes the dependence tree, the others
will not be affected : collaborative work is simple

3. Forces to write clear code : one builder builds only one
thing

4. Forces to write efficient code (spatial and temporal
localities are good)

2%

SUMMARY

With the IRP method:

1. Code is easy to develop for a new developer : Adding a
new feature only requires to know the names of the
needed entities

2. If one developer changes the dependence tree, the others
will not be affected : collaborative work is simple

3. Forces to write clear code : one builder builds only one
thing

4. Forces to write efficient code (spatial and temporal
localities are good)

But in real life:

1. A lot more typing is required

2. Programmers are lazy
2

OUTLINE

Programming with Implicit Reference to Parameters (IRP)

The IRPF90 code generator

25

IRPF90

- Extends Fortran with additional keywords
- Fortran code generator (source-to-source compiler)
- Writes all the mechanical IRP code

IRPF90

Useful features:

- Automatic Makefile generation

- Automatic Documentation

- Text editor integration

- Some Introspection

- Meta programming

- Some features targeted for HPC

http://irpf90.ups-tlse.fr
https://gitlab.com/scemama/irpf90
https://www.gitbook.com/book/scemama/irpf90 26

http://irpf90.ups-tlse.fr
https://gitlab.com/scemama/irpf90
https://www.gitbook.com/book/scemama/irpf90

IRPF90 EXAMPLE

program irp_example
BEGIN_PROVIDER [integer, ul]

integer, externmal :: fu
ul = fu(d1,d2)
END_PROVIDER

print *, 't=', t

end

BEGIN_PROVIDER [integer, t]
t = ul+vtd

BEGIN_PROVIDER [integer, u2]
END_PROVIDER

integer, external :: fu
u2 = fu(d3,d4)

BEGIN_PROVIDER [integer,w]
END_PROVIDER

w = d5+3

END_PROVIDER
integer function fu(x,y)

int , intent (i S8 5,
BEGIN_PROVIDER [integer, v] integer, intent(in) X,y
fu = x+y+1

v = u2+w+2
end function
END_PROVIDER 27

FEATURES : ARRAYS

BEGIN_PROVIDER [double precision, A, (diml, 3)]

END_PROVIDER

- Allocation of IRP arrays done automatically

- Dimensioning variables can be IRP entities, provided
before the memory allocation

- FREE keyword to force to free memory. Invalidates the
entity.

28

FEATURES : DOCUMENTATION

BEGIN_PROVIDER [double precision, &
SCF_density_matrix_ao, (ao_num,ao_num)]
implicit none
BEGIN_DOC
! Density matriz in the A0 basis, used in the SCF.
END_DOC

END_PROVIDER

$ irpman fock_matrix_mo

29

FEATURES : DOCUMENTATION

IRPF90 entities(1) scf_density_matrix_ao IRPF90 entities(1l)
Declaration

double precision, allocatable :: scf_density_matrix_ao (ao_num,ao_num)
Description

Density matrix in the AO basis, used in the SCF.

File
scf_utils/scf_density_matrix_ao.irp.f

Needs
ao_num
elec_alpha_num
elec_beta_num
scf_density_matrix_ao_alpha

scf_density_matrix_ao_beta

Needed by

fps_spf_matrix_ao

IRPF90 entities scf_density_matrix_ao IRPF90 entities(1l)

30

IRPF90 DEMO

- Start with 3 files : irp_examplel.irp.f, uvwt.irp.f,
input.irp.f

+ irpf90 --init: Creates Makefile

- make : Compiles the code and creates irp_examplel,
irpf90_entities, tags, IRPF90_man/*,
IRPF90_temp/*.

- ./irp_examplel : Run the program

- vim Makefile : Edit the O
Makefile to add the -d

option ERRC>
- make && ./irp_examplel : 0 ° a @

Run the program with

debug on Co) (0 ()

IRPF90 DEMO

* irpman t ; irpman fu

- Multiple executables : Create irp_example2.irp.f which
prints t and v

- Integration with Vim : Syntax coloring, Ctrl-1], tag, K,

vim -t

32

ITERATIVE PROCESSES

Iterative processes involve cyclic dependencies

TOUCH A

TOUCH A : A isvalid, but everything that needs A is invalidated.

33

ITERATIVE PROCESSES

(a) Everything is valid
(b) x is modified
(c) x TOUCHed

34

MANY FEATURES

- Assert keyword, Templates

- Variables can be declared anywhere

- +=, -= *= operators

- Dependencies are known by IRPF90 — Makefiles are built
automatically

- Array alignment, Variable substitution

- Codelet generation

- TSC Profiler

- Thread safety (OpenMP)

- Syntax highlighting in Vim

- Generation of tags to navigate in the code

- No problem using external libraries (MKL, MPI, etc)

35

QUANTUM PACKAGE

QUANTUM PACKAGE

IRPFOO0 library for post-HF quantum chemistry
- Developed at LCPQ (Toulouse) and LCT
(Paris)

- Open Source (AGPL), Hosted on GitHub:
https://github.com/QuantumPackage/qp2

- Goal : Easy for the user and the
programmer

- Long term objective : Massively parallel
post-HF

https://quantumpackage.github.io/qp2/

37

https://github.com/QuantumPackage/qp2
https://quantumpackage.github.io/qp2/

QUANTUM PACKAGE

Why another package for quantum chemistry?

Telling a programmer that someone already wrote a routine for
this is like telling a songwriter that someone already wrote a
love song.

Some guy on twitter..

38

SELECTED CONFIGURATION INTERACTION

Perturbatively Selected Configuration Interaction (CIPSI)

- Don't explore the complete Cl space, but select
determinants on-the-fly (CIPSI) with perturbation theory.

- Target spaces : Full-Cl, MR-CISD, large CAS
- Use PT2 to estimate the missing part

- Requires Determinant-driven algorithms

39

ALGORITHM

CIPSI Algorithm

1. Start with |Wy) = |HF)

40

ALGORITHM

CIPSI Algorithm

1. Start with |Wy) = |HF)

. a i 2
2. Y{|i)} ¢ Wybut € {Tsp|¥n)}, compute e; = 7E($L7)ﬂ“<’,”|;{“>

40

ALGORITHM

CIPSI Algorithm

1. Start with |Wy) = |HF)

. 2 i 2
2. Y{|i)} ¢ Wybut € {Tgp|V¥n)}, compute e; = %
3. if lej] > ep, select |i)

40

ALGORITHM

CIPSI Algorithm

1. Start with |Wy) = |HF)

. 2 i 2
2. Y{|i)} ¢ Wybut € {Tgp|V¥n)}, compute e; = %
3. if lej] > ep, select |i)

4. Estimated energy : E(W,) + E(PT2)y = E(Vp) + 3, €

40

ALGORITHM

CIPSI Algorithm

=

. Start with |Wg) = |HF)

2. W{li)} ¢ Wnbut € {Tsp|¥n)} , compute e; = ilZd¥el
3. if lej] > ep, select |i)

4. Estimated energy : E(W,) + E(PT2)y = E(Vp) + 3, €

5 Wng1 = Wi + 3 jselected) Cil)

40

ALGORITHM

CIPSI Algorithm

=

. Start with |Wg) = |HF)
. a i 2
2. Y{|i)} ¢ Wybut € {Tsp|¥n)}, compute e; = 7E($L7)ﬂ“<’,”|;{“>
3. if lej] > ep, select |i)
4. Estimated energy : E(W,) + E(PT2)y = E(Vp) + 3, €
5 Wy =WV, + Zi(selected) C[‘i>
6. Minimize E(V,.4) (Davidson)

40

ALGORITHM

CIPSI Algorithm

=

. Start with |Wg) = |HF)
. S i 2
- Y{|)} ¢ Wybut € {Tgp|Wn)}, compute e; = 7E($L7)ﬂ“<’,”|;{“>
if |ej| > en, select |i)
Estimated energy : E(Vp) + E(PT2), = E(Wp) + 3, €

Wnpr =Wy + Zi(selected) C/‘i>
Minimize E(W,4+) (Davidson)

~ O W

Choose €en41 < €n

40

ALGORITHM

CIPSI Algorithm

=

© N O U W N

. Start with |Wg) = |HF)
- V{|i)} ¢ Wnbut € {Tsp|Wn)} , compute e; = gy

(i H|Wn)?

if |ej| > en, select |i)

Estimated energy : E(Wn) + E(PT2)n = E(Wn) + > ;€
Vi1 = Vn + 3 iselected) Cili)

Minimize E(W,4+) (Davidson)

Choose €p11 < €p

Go to step 2

40

SELECTED CI

- When n — oo, E(PT2)p= = 0, so the complete Cl problem

is solved.

- Every Cl problem can be solved by iterative perturbative

Energy (au)

selection

-149.2 4

T T T
Excited state, Eyar —+—

Ground state, Eyay —%— 1
Excited state, E,5+PT2
Ground state, E5+PT2 T

-149.3
-149.4 -
-149.5 Fr—

1496 - ~ PN

-149.7 | \ L H2N+ NH2

-149.8 \x\ i T
-149.9 PR T aug-cc-pvDZ

-150 - B B e
-150.1 : =
150.2 I I " " " " "

10 100 1000 10000 100000 1x10® 1x107 1x108

Number of determinants

41

QUANTUM PACKAGE DEMO

‘ I ‘ Journal of Chemical Theory and Computation
pubs.acs.org/JCTC

Taming the First-Row Diatomics: A Full Configuration Interaction
Quantum Monte Carlo Study
Deidre Cleland, George H. Booth, Catherine Overy, and Ali Alavi*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

ABSTRACT: The initiator full configuration interaction quantum Monte Carlo (i-FCIQMC) method has recently been
developed as a highly accurate stochastic electronic structure technique. It has been shown to calculate the exact basis-set ground
state energy of small molecules, to within modest stochastic error bars, using tractable computational cost. Here, we use this
technique to elucidate an often troublesome series of first-row diatomics consisting of Be,, C,, CN, CO, N,, NO, O,, and F,.
Using i-FCIQMC, the dissociation energies of these molecules are obtained almost entirely to within chemical accuracy of
experimental results. Furthermore, the i-FCIQMC calculations are performed in a relatively black-box manner, without any a
priori knowledge or specification of the wave function. The size consistency of i-FCIQMC is also demonstrated with regards to
these diatomics at their more multiconfigurational stretched geometries. The clear and simple i-FCIQMC wave functions
obtained for these systems are then compared and investigated to demonstrate the dynamic identification of the dominant
determinants contributing to significant static correlation. The appearance and nature of such determinants is shown to provide
insight into both the i-FCIQMC algorithm and the diatomics themselves.

42

QUANTUM PACKAGE DEMO

Journal of Chemical Theory and Computation

Table 1. i-FCIQMC Energies of the Series of First Row Diatomics and Their Constituent Atoms (Hartree)”

system
Be (')*
C (°p)
N (*s)
o (’p)
F (°P)
Be, (1Tp)"
C, (')°
CN (*x%)
N, ('2)

co ('z")
NO (I
0, (°%)
F, ('%)

VDZ vTZ vQz
—14.65182(3) —14.66244(5) —14.66568(4)
—37.76069(1) -37.78121(1) —37.786960(9)
—54.47858(1) —54.51491(1) —54.52506(1)
~74.91010(3) —74.97414(3) —74.99388(3)
—99.52772(4) —99.6205(1) —99.65052(7)
—29.30449(8) —29.32772(7) —29.3350(1)
~75.7285(1) ~75.7850(1) —75.8023(3)
—92.4933(1) —92.5698(1) —92.5938(1)
—109.2767(1) —109.3754(1) —109.4058(1)
—113.05564(9) —113.15639(7) —113.1887(1)
—129.59995(8) —129.7185(1) —129.7562(2)
—149.98781(8) —150.1305(1) —150.1750(2)
—199.09941(9) —199.2977(1) —199.3598(2)

V(TQZ

—14.66803(6)
—37.79039(1)
—54.53115(2)
—75.00602(4)
—99.6686(2)
—29.3403(1)
—75.8127(3)
—92.6081(2)
—109.4245(1)
—113.2080(2)
—129.7793(2)
—1502027(2)
—199.3984(2)

VQZ+AEZH™

—37.788368(9)
—54.52802(1)
~75.00103(3)
—99.66275(7)

~75.8082(3)

—92.6028(1)
—109.4179(1)
—113.2016(1)
—129.7713(2)
—150.1934(2)
—199.3870(2)

“Except when noted, these systems had their core electrons frozen and were calculated at the experimental equilibrium bond lengths given by Huber

and Herzberg.'"*® The VQZ+AE™
basis set extrapolation given by eq 8. The Be, experimental bond length was taken from ref 106. The standard F12 basis sets were not available for

Be, and so, the corrected energies were omitted for consistency. "All electron calculations use the equivalent cc-pCVXZ basis sets

<d(T) regults refer to the i-FCIQMC VQZ energy corrected by a CCSD(T)-F12/B contribution, and V(TQ)Z to the

F, cc-pVQZ : -199.3598(2)

43

QUANTUM PACKAGE DEMO

+ File £2.zmt contains:

F
1 1.4119

create_ezfio -b cc-pvqz f2.zmt

run scf

F
ap
qp

* gp set_frozen_core
gp set determinants n_det_max 400e3
qp

run fci

44

QUANTUM PACKAGE DEMO

In the meantime... Let's program a Hartree-Fock!

* gp plugins create —n SimpleHF hartree_fock
* gp plugins install SimpleHF
+ cd plugins/local/SimpleHF ; ninja
- Test: h2o.xyz

3

H20

H 0. 0.7572 -0.4692

H 0. -0.7572 -0.4692

0 0. O. 0.1173
* gp create_ezfio -b cc-pvdz h2o0.xyz
* vim SimpleHF.irp.f
* gqp run SimpleHF

45

QUANTUM PACKAGE DEMO

* vim SimpleHF.irp.f
program SimpleHF

implicit none

BEGIN_DOC

! My simple Hartree-Fock program
END_DOC

integer :: i

[eipalins €3, Jo—mom—— SCF starts here --———-—-
do i=1,30

print *, i, HF_energy
mo_coef = eigenvectors_fock_matrix_mo
TOUCH mo_coef

end do

print *, 'Final energy : ', HF_energy

print *, '--—----- SCF ends here ------
end

- Compile with ninja
- un with gp run SimpleHF

46

F, RESULTS

-198.8 ‘
E EEvar ——
var T Epm2
-198.9 i-FCIQMC 7
-199 =
El
& -199.1 + |
>
o
2 .199.2 g
w
-199.3 i
-199.4 W i
_1995 | | | | |
10 100 1000 10000 100000 1x106 1x107

Number of determinants

47

ENERGY EXTRAPOLATION

-199.32 T
Evar +

-199.325 Linear Extrapolation -
i-FCIQMC

-199.33
-199.335
-199.34

-199.345 |

Energy (au)

-199.35

-199.355

-199.36

'199-365 | | | | | | | |
-0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0

Epr2

48

CONCLUSION

IRPF9O0:
http://irpf90.ups-tlse.fr

Quantum Package:
https://quantumpackage.github.io/qp2

49

http://irpf90.ups-tlse.fr
https://quantumpackage.github.io/qp2

	Programming with Implicit Reference to Parameters (IRP)
	Motivations
	The IRP method
	The IRPF90 code generator

	Quantum Package

