MCSCF en présence d'une fonction de corrélation de Jastrow

Anthony Scemama, Claudia Filippi

scemama@lorentz.leidenuniv.nl

Instituut Lorentz, Leiden, Pays-Bas

Introduction

Objectif : Méthode précise pour le calcul de transitions électroniques.

Introduction

- Objectif : Méthode précise pour le calcul de transitions électroniques.
- Application de cette méthode à des systèmes d'intérêt biologique (GFP)

Introduction

- Objectif : Méthode précise pour le calcul de transitions électroniques.
- Application de cette méthode à des systèmes d'intérêt biologique (GFP)
- États excité \Leftrightarrow problèmes liés à la corrélation.

 Corrélation non-dynamique: quasi dégénérescences d'états

- Corrélation non-dynamique: quasi dégénérescences d'états
- Corrélation dynamique: répulsion e-e

- Corrélation non-dynamique: quasi dégénérescences d'états
- Corrélation dynamique: répulsion e-e

•
$$\Phi = \sum_{i}^{M} c_i D_i$$

Les 2 phénomènes sont décrits par la combinaison linéaire de configurations D_i .

- Corrélation non-dynamique: quasi dégénérescences d'états
- Corrélation dynamique: répulsion e-e

$$\Phi = \sum_{i}^{M} c_i D_i$$

Les 2 phénomènes sont décrits par la combinaison linéaire de configurations D_i .

 Difficulté à reproduire le cusp e-e avec des bases mono-électroniques

- Corrélation non-dynamique: quasi dégénérescences d'états
- Corrélation dynamique: répulsion e-e

•
$$\Phi = \sum_{i}^{M} c_i D_i$$

Les 2 phénomènes sont décrits par la combinaison linéaire de configurations D_i .

- Difficulté à reproduire le cusp e-e avec des bases mono-électroniques
- Convergence lente des effets de corrélation dynamique (M est grand)

Slater-Jastrow : $\Psi = \mathcal{J}\Phi$

Slater-Jastrow :
$$\Psi = \mathcal{J}\Phi$$

• Corrélation non-dynamique $\Phi = \sum_{i}^{M} c_{i} D_{i}$

Slater-Jastrow :
$$\Psi = \mathcal{J}\Phi$$

• Corrélation non-dynamique $\Phi = \sum_{i}^{M} c_{i} D_{i}$

Corrélation dynamique

$$\mathcal{J} = \exp\left[\sum_{i}^{N_{\text{elec}}} \sum_{j>i}^{N_{\text{elec}}} a_{\sigma} \frac{r_{ij}}{1+b_{\sigma}r_{ij}} - \sum_{i}^{N_{\text{elec}}} \sum_{M}^{N_{\text{nucl}}} P_M(r_{iM})\right]$$

Slater-Jastrow :
$$\Psi = \mathcal{J}\Phi$$

• Corrélation non-dynamique $\Phi = \sum_{i}^{M} c_{i} D_{i}$

Corrélation dynamique

$$\mathcal{J} = \exp\left[\sum_{i}^{N_{\text{elec}}} \sum_{j>i}^{N_{\text{elec}}} a_{\sigma} \frac{r_{ij}}{1+b_{\sigma}r_{ij}} - \sum_{i}^{N_{\text{elec}}} \sum_{M}^{N_{\text{nucl}}} P_{M}(r_{iM})\right]$$

Plan de l'exposé

- Méthodes de calcul
 - Monte Carlo Variationnel
 - Diffusion Monte Carlo
 - Qualité de la fonction d'onde

• Pour une fonction d'onde Ψ et un opérateur \widehat{O} : $\frac{\langle \Psi | \widehat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int |\Psi(r_1, \dots, r_N)|^2 O_L(r_1, \dots, r_N) \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}{\int |\Psi(r_1, \dots, r_N)|^2 \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}$

- Pour une fonction d'onde Ψ et un opérateur \widehat{O} : $\frac{\langle \Psi | \widehat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int |\Psi(r_1, \dots, r_N)|^2 O_L(r_1, \dots, r_N) \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}{\int |\Psi(r_1, \dots, r_N)|^2 \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}$
- $O_L(r_1, ..., r_N)$ est une fonction *locale* : $O_L(r_1, ..., r_N) = \frac{\widehat{O}\Psi(r_1, ..., r_N)}{\Psi(r_1, ..., r_N)}$

- Pour une fonction d'onde Ψ et un opérateur \widehat{O} : $\frac{\langle \Psi | \widehat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int |\Psi(r_1, \dots, r_N)|^2 O_L(r_1, \dots, r_N) \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}{\int |\Psi(r_1, \dots, r_N)|^2 \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}$
- $O_L(r_1, ..., r_N)$ est une fonction *locale* : $O_L(r_1, ..., r_N) = \frac{\widehat{O}\Psi(r_1, ..., r_N)}{\Psi(r_1, ..., r_N)}$
- Pour l'hamiltonien on a : $E_L(r_1, \dots, r_N) = \frac{\widehat{H}\Psi(r_1, \dots, r_N)}{\Psi(r_1, \dots, r_N)}$

- Pour une fonction d'onde Ψ et un opérateur \widehat{O} : $\frac{\langle \Psi | \widehat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int |\Psi(r_1, \dots, r_N)|^2 O_L(r_1, \dots, r_N) \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}{\int |\Psi(r_1, \dots, r_N)|^2 \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}$
- $O_L(r_1, ..., r_N)$ est une fonction *locale* : $O_L(r_1, ..., r_N) = \frac{\widehat{O}\Psi(r_1, ..., r_N)}{\Psi(r_1, ..., r_N)}$
- Pour l'hamiltonien on a : $E_L(r_1, \ldots, r_N) = \frac{\widehat{H}\Psi(r_1, \ldots, r_N)}{\Psi(r_1, \ldots, r_N)}$
- Algorithme de Metropolis pour échantillonner la densité

- Pour une fonction d'onde Ψ et un opérateur \widehat{O} : $\frac{\langle \Psi | \widehat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int |\Psi(r_1, \dots, r_N)|^2 O_L(r_1, \dots, r_N) \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}{\int |\Psi(r_1, \dots, r_N)|^2 \, \mathrm{dr}_1 \dots \, \mathrm{dr}_N}$
- $O_L(r_1, ..., r_N)$ est une fonction *locale* : $O_L(r_1, ..., r_N) = \frac{\widehat{O}\Psi(r_1, ..., r_N)}{\Psi(r_1, ..., r_N)}$
- Pour l'hamiltonien on a : $E_L(r_1, \dots, r_N) = \frac{\widehat{H}\Psi(r_1, \dots, r_N)}{\Psi(r_1, \dots, r_N)}$
- Algorithme de Metropolis pour échantillonner la densité
- 30-60% de l'énergie de corrélation

• Projection de l'état fondamental : $\Psi_0 \sim e^{-\hat{H}t} \Psi$

- Projection de l'état fondamental : $\Psi_0 \sim e^{-\widehat{H}t} \Psi$
- Fermions ⇒ limitation de la méthode liée au caractère antisymétrique de la fonction d'onde

- Projection de l'état fondamental : $\Psi_0 \sim e^{-\widehat{H}t} \Psi$
- Fermions ⇒ limitation de la méthode liée au caractère antisymétrique de la fonction d'onde
- Nœuds : $\Psi(r_1, ..., r_N) = 0$ Approximation des nœuds fixés :
 Meilleure solution possible avec les mêmes nœuds que la fonction d'onde d'essai.

- Projection de l'état fondamental : $\Psi_0 \sim e^{-\widehat{H}t} \Psi$
- Fermions ⇒ limitation de la méthode liée au caractère antisymétrique de la fonction d'onde
- Nœuds : $\Psi(r_1, \ldots, r_N) = 0$ Approximation des nœuds fixés :
 Meilleure solution possible avec les mêmes nœuds que la fonction d'onde d'essai.
- J > 0, donc les nœuds sont imposés par la composante déterminantale Φ
 ⇒ optimisation de Φ en présence du facteur de Jastrow J.

- Projection de l'état fondamental : $\Psi_0 \sim e^{-\widehat{H}t} \Psi$
- Fermions ⇒ limitation de la méthode liée au caractère antisymétrique de la fonction d'onde
- Nœuds : $\Psi(r_1, \ldots, r_N) = 0$ Approximation des nœuds fixés :
 Meilleure solution possible avec les mêmes nœuds que la fonction d'onde d'essai.
- J > 0, donc les nœuds sont imposés par la composante déterminantale Φ
 ⇒ optimisation de Φ en présence du facteur de Jastrow J.
- 90-100% de l'énergie de corrélation

• La fonction d'onde exacte est fontion propre de \hat{H} : $\hat{H}\psi(r_1,\ldots,r_N) = E\psi(r_1,\ldots,r_N)$

- La fonction d'onde exacte est fontion propre de \hat{H} : $\hat{H}\psi(r_1,\ldots,r_N) = E\psi(r_1,\ldots,r_N)$
- Une fonction d'onde approchée ne l'est pas : $\widehat{H}\Psi(r_1, \dots, r_N) = E_L(r_1, \dots, r_N)\Psi(r_1, \dots, r_N)$

- La fonction d'onde exacte est fontion propre de \hat{H} : $\hat{H}\psi(r_1,\ldots,r_N) = E\psi(r_1,\ldots,r_N)$
- Une fonction d'onde approchée ne l'est pas : $\widehat{H}\Psi(r_1, \dots, r_N) = E_L(r_1, \dots, r_N)\Psi(r_1, \dots, r_N)$
- Un estimateur de la qualité de la fonction d'onde est la variance de l'énergie locale :

 $\sigma^2 = 0$ si Ψ est fonction propre de \hat{H} .

- La fonction d'onde exacte est fontion propre de \hat{H} : $\hat{H}\psi(r_1, \dots, r_N) = E\psi(r_1, \dots, r_N)$
- Une fonction d'onde approchée ne l'est pas : $\widehat{H}\Psi(r_1, \dots, r_N) = E_L(r_1, \dots, r_N)\Psi(r_1, \dots, r_N)$
- Un estimateur de la qualité de la fonction d'onde est la variance de l'énergie locale :

 $\sigma^2 = 0$ si Ψ est fonction propre de \hat{H} .

Plus la fonction d'onde est "bonne", plus la convergence du calcul est rapide.

- La fonction d'onde exacte est fontion propre de \hat{H} : $\hat{H}\psi(r_1,\ldots,r_N) = E\psi(r_1,\ldots,r_N)$
- Une fonction d'onde approchée ne l'est pas : $\widehat{H}\Psi(r_1, \dots, r_N) = E_L(r_1, \dots, r_N)\Psi(r_1, \dots, r_N)$
- Un estimateur de la qualité de la fonction d'onde est la variance de l'énergie locale :

 $\sigma^2 = 0$ si Ψ est fonction propre de \hat{H} .

- Plus la fonction d'onde est "bonne", plus la convergence du calcul est rapide.
- Méthode en $\mathcal{O}(N^3)$ qui peut être rendue $\mathcal{O}(N)$.

Plan de l'exposé

- Méthodes de calcul
 - Monte Carlo Variationnel
 - Diffusion Monte Carlo
 - Qualité de la fonction d'onde
- Optimisation de la fonction d'onde
 - Coefficients de l'IC
 - Orbitales
 - State-average

La fonction d'onde à optimiser est :

$$\Psi = \sum_{i}^{N_{\text{det}}} c_i \mathcal{J} D_i$$

La fonction d'onde à optimiser est :

$$\Psi = \sum_{i}^{N_{\text{det}}} c_i \mathcal{J} D_i$$

Échantillonnage par VMC de :

La fonction d'onde à optimiser est :

$$\Psi = \sum_{i}^{N_{\text{det}}} c_i \mathcal{J} D_i$$

- Échantillonnage par VMC de :
 - l'hamiltonien IC : $\mathbf{H}_{ij} = \frac{\langle \mathcal{J}D_i | \hat{H} | \mathcal{J}D_j \rangle}{\langle \Psi | \Psi \rangle}$

La fonction d'onde à optimiser est :

$$\Psi = \sum_{i}^{N_{\text{det}}} c_i \mathcal{J} D_i$$

- Échantillonnage par VMC de :
 - l'hamiltonien IC : $\mathbf{H}_{ij} = \frac{\langle \mathcal{J}D_i | \hat{H} | \mathcal{J}D_j \rangle}{\langle \Psi | \Psi \rangle}$
 - la matrice de recouvrement : $\mathbf{S}_{ij} = \frac{\langle \mathcal{J}D_i | \mathcal{J}D_j \rangle}{\langle \Psi | \Psi \rangle}$

La fonction d'onde à optimiser est :

$$\Psi = \sum_{i}^{N_{\text{det}}} c_i \mathcal{J} D_i$$

7 7

- Échantillonnage par VMC de :
 - l'hamiltonien IC : $\mathbf{H}_{ij} = \frac{\langle \mathcal{J}D_i | \hat{H} | \mathcal{J}D_j \rangle}{\langle \Psi | \Psi \rangle}$
 - la matrice de recouvrement : $\mathbf{S}_{ij} = \frac{\langle \mathcal{J}D_i | \mathcal{J}D_j \rangle}{\langle \Psi | \Psi \rangle}$
- Résolution de Hc = ESc.

CI : C₂

	<i>c</i> ₁	c_2	$\langle E \rangle$	σ^2
$\Phi_0 = CAS(2,2)$	0.8862	-0.4633	-10.7541	1.41
VMC				
$\mathcal{J}\Phi_0$	0.8862	-0.4633	-11.0036(6)	0.17
${\cal J}\Phi_{ m CI}$	0.9356	-0.3530	-11.0078(9)	0.17
DMC				
$\mathcal{J}\Phi_0$	0.8862	-0.4633	-11.0383(5)	0.18
${\cal J}\Phi_{ m CI}$	0.9356	-0.3530	-11.0418(7)	0.18
Optimisation des orbitales : super-CI

Variations des orbitales exprimées comme des simples excitations :

$$\Psi' = \mathcal{J}\Phi' = \mathcal{J}\sum_{i} \left(c_i D_i + \sum_{j}^{\text{occ}} \sum_{l} \tilde{c}_i^{j \to l} D_i^{j \to l} \right)$$

Optimisation des orbitales : super-CI

Variations des orbitales exprimées comme des simples excitations :

$$\Psi' = \mathcal{J}\Phi' = \mathcal{J}\sum_{i} \left(c_i D_i + \sum_{j} \sum_{l} \tilde{c}_i^{j \to l} D_i^{j \to l} \right)$$

• Orbitales optimales $\Rightarrow {\tilde{c}_i^{j \to l}} = 0$

Optimisation des orbitales : super-CI

Variations des orbitales exprimées comme des simples excitations :

$$\Psi' = \mathcal{J}\Phi' = \mathcal{J}\sum_{i} \left(c_i D_i + \sum_{j}^{\text{occ}} \sum_{l} \tilde{c}_i^{j \to l} D_i^{j \to l} \right)$$

- Orbitales optimales $\Rightarrow {\tilde{c}_i^{j \to l}} = 0$
- Trop de simples excitations pour échantillonner la matrice d'IC complète \Rightarrow approche moins coûteuse.

•
$$\Psi' = \Psi + \sum_{k} \delta_k \frac{\partial \Psi}{\partial \alpha_k} = \Psi \left(1 + \sum_{k} \delta_k O_k \right) \qquad O_k = \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_k}$$

•
$$\Psi' = \Psi + \sum_{k} \delta_k \frac{\partial \Psi}{\partial \alpha_k} = \Psi \left(1 + \sum_{k} \delta_k O_k \right) \qquad O_k = \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_k}$$

• L'énergie est stationnaire si les dérivées sont nulles : $\frac{\partial E}{\partial \delta_k}\Big|_{\delta=0} = 2\langle (E_L - \bar{E})(O_k - \bar{O}) \rangle_{\Psi^2} = 0$

•
$$\Psi' = \Psi + \sum_{k} \delta_k \frac{\partial \Psi}{\partial \alpha_k} = \Psi \left(1 + \sum_{k} \delta_k O_k \right) \qquad O_k = \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_k}$$

- L'énergie est stationnaire si les dérivées sont nulles : $\frac{\partial E}{\partial \delta_k}\Big|_{\delta=0} = 2\langle (E_L - \bar{E})(O_k - \bar{O}) \rangle_{\Psi^2} = 0$
- Si l'énergie est stationnaire, les fluctuations de E_L et O_k sont décorrélées.

•
$$\Psi' = \Psi + \sum_{k} \delta_k \frac{\partial \Psi}{\partial \alpha_k} = \Psi \left(1 + \sum_{k} \delta_k O_k \right) \qquad O_k = \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_k}$$

- L'énergie est stationnaire si les dérivées sont nulles : $\frac{\partial E}{\partial \delta_k}\Big|_{\delta=0} = 2\langle (E_L - \bar{E})(O_k - \bar{O}) \rangle_{\Psi^2} = 0$
- Si l'énergie est stationnaire, les fluctuations de E_L et O_k sont décorrélées.

Ajustement aux moindres carrés des fluctuations de E_L avec O_k:

$$\chi^2 = \langle (E_L - \bar{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

Ajustement aux moindres carrés des fluctuations de E_L avec O_k :

$$\chi^2 = \langle (E_L - \bar{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

Si Ψ est optimale, χ^2 est minimal donc $\{V_k\} = 0$.

Ajustement aux moindres carrés des fluctuations de E_L avec O_k :

$$\chi^2 = \langle (E_L - \bar{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

- Si Ψ est optimale, χ^2 est minimal donc $\{V_k\} = 0$.
- Si Ψ n'est pas optimale, on minimise $\chi^2 \longrightarrow \frac{\partial \chi^2}{\partial V_k} = 0$

Ajustement aux moindres carrés des fluctuations de E_L avec O_k :

$$\chi^2 = \langle (E_L - \bar{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

- Si Ψ est optimale, χ^2 est minimal donc $\{V_k\} = 0$.
- Si Ψ n'est pas optimale, on minimise $\chi^2 \longrightarrow \frac{\partial \chi^2}{\partial V_k} = 0$
- Système d'equations linéaires : $\langle (E_L - \bar{E})(O_m - \bar{O}_m) \rangle_{\Psi^2} = \sum_k V_k \langle (O_k - \bar{O}_k)(O_m - \bar{O}_m) \rangle_{\Psi^2}$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

$$\widehat{H}\psi = E\psi$$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

$$\widehat{H}\psi = E\psi$$

$$I \quad \mathbf{Si} \ \psi = \mathcal{J}\phi, \qquad \widehat{H}\mathcal{J}\phi = E\mathcal{J}\phi$$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

 ϕ est fonction propre de $\mathcal{J}^{-1}\widehat{H}\mathcal{J}$ avec la même valeur propre E

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

En général, Φ est fonction propre d'un hamiltonien approché $\widehat{\mathcal{H}}^{(0)}_{eff}$ (Hartree-Fock, Kohn-Sham, MCSCF,...)

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

- En général, Φ est fonction propre d'un hamiltonien approché $\widehat{\mathcal{H}}^{(0)}_{eff}$ (Hartree-Fock, Kohn-Sham, MCSCF,...)
- $\widehat{\mathcal{H}}_{eff}^{(0)}$ est une approximation de $\mathcal{J}^{-1}\widehat{H}\mathcal{J}$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

- En général, Φ est fonction propre d'un hamiltonien approché $\widehat{\mathcal{H}}^{(0)}_{eff}$ (Hartree-Fock, Kohn-Sham, MCSCF,...)
- $\widehat{\mathcal{H}}_{eff}^{(0)}$ est une approximation de $\mathcal{J}^{-1}\widehat{H}\mathcal{J}$
- Si on améliore $\widehat{\mathcal{H}}_{eff}$, ses fonctions propres vont être plus proches des fonctions propres de $\mathcal{J}^{-1}\widehat{H}\mathcal{J}$

•
$$\chi^2 = \langle (\frac{\widehat{H}\mathcal{J}\Phi}{\mathcal{J}\Phi} - \overline{E} - \sum_k V_k O_k)^2 \rangle_{\Psi^2}$$

- En général, Φ est fonction propre d'un hamiltonien approché $\widehat{\mathcal{H}}^{(0)}_{eff}$ (Hartree-Fock, Kohn-Sham, MCSCF,...)
- $\widehat{\mathcal{H}}_{eff}^{(0)}$ est une approximation de $\mathcal{J}^{-1}\widehat{H}\mathcal{J}$
- Si on améliore $\widehat{\mathcal{H}}_{eff}$, ses fonctions propres vont être plus proches des fonctions propres de $\mathcal{J}^{-1}\widehat{H}\mathcal{J}$
- Les V_k sont utilisés pour améliorer itérativement $\widehat{\mathcal{H}}_{eff}$ jusqu'à $\{V_k\} = 0$.

• Au départ : $\widehat{\mathcal{H}}_{eff}^{(0)}$ (CI) avec les états propres $\{\Phi_i\}$: $\widehat{\mathcal{H}}_{eff}^{(0)} = \sum_k E_k |\Phi_k\rangle \langle \Phi_k|$

- Au départ : $\widehat{\mathcal{H}}_{eff}^{(0)}$ (CI) avec les états propres $\{\Phi_i\}$: $\widehat{\mathcal{H}}_{eff}^{(0)} = \sum_k E_k |\Phi_k\rangle \langle \Phi_k|$
- Les variations de Φ_0 sont réalisées dans l'espace des états $\{\Phi_i\}$: $\Psi = \mathcal{J}\Phi_0 \longrightarrow \Psi' = \mathcal{J}\Phi_0 \left(1 + \sum_k \delta_k \frac{\Phi_k}{\Phi_0}\right)$

- Au départ : $\widehat{\mathcal{H}}_{eff}^{(0)}$ (CI) avec les états propres $\{\Phi_i\}$: $\widehat{\mathcal{H}}_{eff}^{(0)} = \sum_k E_k |\Phi_k\rangle \langle \Phi_k|$
- Les variations de Φ_0 sont réalisées dans l'espace des états $\{\Phi_i\}$: $\Psi = \mathcal{J}\Phi_0 \longrightarrow \Psi' = \mathcal{J}\Phi_0 \left(1 + \sum_k \delta_k \frac{\Phi_k}{\Phi_0}\right)$
- Les fluctuations de l'énergie sont ajustées avec $O_k = \frac{\Phi_k}{\Phi_0}$: $\langle (E_L - \bar{E})(O_m - \bar{O}_m) \rangle_{\Psi^2} = \sum_k V_k \langle (O_k - \bar{O}_k)(O_m - \bar{O}_m) \rangle_{\Psi^2}$

- Au départ : $\widehat{\mathcal{H}}_{eff}^{(0)}$ (CI) avec les états propres $\{\Phi_i\}$: $\widehat{\mathcal{H}}_{eff}^{(0)} = \sum_k E_k |\Phi_k\rangle \langle \Phi_k|$
- Les variations de Φ_0 sont réalisées dans l'espace des états $\{\Phi_i\}$: $\Psi = \mathcal{J}\Phi_0 \longrightarrow \Psi' = \mathcal{J}\Phi_0 \left(1 + \sum_k \delta_k \frac{\Phi_k}{\Phi_0}\right)$
- Les fluctuations de l'énergie sont ajustées avec $O_k = \frac{\Phi_k}{\Phi_0}$: $\langle (E_L - \bar{E})(O_m - \bar{O}_m) \rangle_{\Psi^2} = \sum_k V_k \langle (O_k - \bar{O}_k)(O_m - \bar{O}_m) \rangle_{\Psi^2}$
- $V_k = \langle \mathcal{J}\Phi_0^{(0)} | \hat{H} | \mathcal{J}\Phi_k^{(0)} \rangle$

• Un nouvel hamiltonien est construit comme : $\widehat{\mathcal{H}}_{\text{eff}}^{(1)} = \widehat{\mathcal{H}}_{\text{eff}}^{(0)} + \sum_{k} V_k \left(|\Phi_k\rangle \langle \Phi_0| + |\Phi_0\rangle \langle \Phi_k| \right)$

• Un nouvel hamiltonien est construit comme : $\widehat{\mathcal{H}}_{\text{eff}}^{(1)} = \widehat{\mathcal{H}}_{\text{eff}}^{(0)} + \sum_{k} V_k \left(|\Phi_k\rangle \langle \Phi_0| + |\Phi_0\rangle \langle \Phi_k| \right)$

• $\widehat{\mathcal{H}}_{eff}^{(1)}$ est diagonalisé \Rightarrow nouveaux états propres.

- Un nouvel hamiltonien est construit comme : $\widehat{\mathcal{H}}_{eff}^{(1)} = \widehat{\mathcal{H}}_{eff}^{(0)} + \sum_{k} V_k \left(|\Phi_k\rangle \langle \Phi_0| + |\Phi_0\rangle \langle \Phi_k| \right)$
- If $\widehat{\mathcal{H}}_{eff}^{(1)}$ est diagonalisé \Rightarrow nouveaux états propres.
- On itère jusqu'à $V_k = \langle \mathcal{J}\Phi_0^{(0)} | \hat{H} | \mathcal{J}\Phi_k^{(0)} \rangle = 0$

Approche perturbative

• Éviter le calcul, le stockage et la diagonalisation de $\widehat{\mathcal{H}}_{\mathrm{eff}}$

Approche perturbative

- Éviter le calcul, le stockage et la diagonalisation de $\widehat{\mathcal{H}}_{\mathrm{eff}}$
- Traitement en perturbations :

$$\Phi_0' = \Phi_0 - \sum_{k \neq 0} \frac{V_k}{E_k - E_0} \Phi_k$$

où E_k is l'énergie de l'état propre Φ_k

Approche perturbative

• Éviter le calcul, le stockage et la diagonalisation de $\widehat{\mathcal{H}}_{\mathrm{eff}}$

Traitement en perturbations :

$$\Phi_0' = \Phi_0 - \sum_{k \neq 0} \frac{V_k}{E_k - E_0} \Phi_k$$

où E_k is l'énergie de l'état propre Φ_k

• Estimation des différences d'énergies $E_k - E_0$

On optimise les orbitales canoniques occupées φ_i en mélangeant les virtuelles φ_l

• Construction des determinants SX: $\{D_0^{i \rightarrow l}\}$

On optimise les orbitales canoniques occupées φ_i en mélangeant les virtuelles φ_l

- Construction des determinants SX: $\{D_0^{i \rightarrow l}\}$
- Calcul par VMC de $\langle \Delta E \Delta O^{i \to l} \rangle$ et de $\langle \Delta O^{i \to l} \Delta O^{j \to m} \rangle$ avec $O^{i \to l} = \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_{il}} = \frac{\Phi^{i \to l}}{\Phi} = \frac{D_0^{i \to l}}{D_0}$

On optimise les orbitales canoniques occupées φ_i en mélangeant les virtuelles φ_l

- Construction des determinants SX: $\{D_0^{i \rightarrow l}\}$
- Calcul par VMC de $\langle \Delta E \Delta O^{i \to l} \rangle$ et de $\langle \Delta O^{i \to l} \Delta O^{j \to m} \rangle$ avec $O^{i \to l} = \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_{il}} = \frac{\Phi^{i \to l}}{\Phi} = \frac{D_0^{i \to l}}{D_0}$
- Calcul des $\{V^{i \rightarrow l}\}$ par minimisation de χ^2

On optimise les orbitales canoniques occupées φ_i en mélangeant les virtuelles φ_l

• Construction des determinants SX: $\{D_0^{i \rightarrow l}\}$

• Calcul par VMC de
$$\langle \Delta E \Delta O^{i \to l} \rangle$$
 et de $\langle \Delta O^{i \to l} \Delta O^{j \to m} \rangle$
avec $O^{i \to l} = \frac{1}{\Psi} \frac{\partial \Psi}{\partial \alpha_{il}} = \frac{\Phi^{i \to l}}{\Phi} = \frac{D_0^{i \to l}}{D_0}$

• Calcul des $\{V^{i \rightarrow l}\}$ par minimisation de χ^2

• Mise à jour des orbitales :

$$\varphi_i \longrightarrow \varphi'_i = \varphi_i - \sum_l^{\text{virt}} \frac{V^{i \to l}}{\epsilon_l^{\text{HF}} - \epsilon_i^{\text{HF}}} \varphi_i$$

Estimation de $E_k - E_0$

Necessite les orbitales canoniques MCSCF

Estimation de $E_k - E_0$

Necessite les orbitales canoniques MCSCF

Estimation de $E_k - E_0$

Necessite les orbitales canoniques MCSCF

● Pour une fonction d'onde MCSCF (Ghigo *et al.*): $E^{j \rightarrow l} - E_0 = \epsilon_l - \epsilon_j + \frac{\lambda}{2} \left(\Gamma_{ll} + 2 - \Gamma_{jj} \right)$

MCSCF : C_2

	<i>c</i> ₁	c_2	$\langle E \rangle$	σ^2
$\Phi_0 = CAS(2,2)$	0.8862	-0.4633	-10.7541	1.41
VMC				
$\mathcal{J}\Phi_0$	0.8862	-0.4633	-11.0036(6)	0.17
${\cal J}\Phi_{ m CI}$	0.9356	-0.3530	-11.0078(9)	0.17
$\mathcal{J}\Phi_{\mathrm{MCSCF}}$	0.9354	-0.3535	-11.0149(9)	0.16
DMC				
$\mathcal{J}\Phi_0$	0.8862	-0.4633	-11.0383(5)	0.18
${\cal J}\Phi_{ m CI}$	0.9356	-0.3530	-11.0418(7)	0.18
$\mathcal{J}\Phi_{\mathrm{MCSCF}}$	0.9534	-0.3535	-11.0457(4)	0.16

• On minimise
$$E_{\rm SA} = \sum_i w_i \frac{\langle \Psi_i | \mathcal{H} | \Psi_i \rangle}{\langle \Psi_i | \Psi_i \rangle}$$

• On minimise
$$E_{SA} = \sum_{i} w_i \frac{\langle \Psi_i | \mathcal{H} | \Psi_i \rangle}{\langle \Psi_i | \Psi_i \rangle}$$

• $\chi^2 = \sum_{i} w_i \langle (E_L^{(i)} - \sum_k V_{ki} O_{ki}) \rangle_{\Psi_i^2}$

• On minimise
$$E_{SA} = \sum_{i} w_i \frac{\langle \Psi_i | \mathcal{H} | \Psi_i \rangle}{\langle \Psi_i | \Psi_i \rangle}$$

• $\chi^2 = \sum_{i} w_i \langle (E_L^{(i)} - \sum_k V_{ki} O_{ki}) \rangle_{\Psi_i^2}$

 \blacksquare \Rightarrow Ensemble d'équations linéaires pour chaque état

• On minimise
$$E_{\rm SA} = \sum_{i} w_i \frac{\langle \Psi_i | \mathcal{H} | \Psi_i \rangle}{\langle \Psi_i | \Psi_i \rangle}$$

•
$$\chi^2 = \sum_i w_i \langle (E_L^{(i)} - \sum_k V_{ki} O_{ki}) \rangle_{\Psi_i^2}$$

- \blacksquare \Rightarrow Ensemble d'équations linéaires pour chaque état
- Les V_{ki} sont utilisés pour construire $\Gamma^{(i)}$

• On minimise
$$E_{SA} = \sum_{i} w_i \frac{\langle \Psi_i | \mathcal{H} | \Psi_i \rangle}{\langle \Psi_i | \Psi_i \rangle}$$

•
$$\chi^2 = \sum_i w_i \langle (E_L^{(i)} - \sum_k V_{ki} O_{ki}) \rangle_{\Psi_i^2}$$

- \blacksquare \Rightarrow Ensemble d'équations linéaires pour chaque état
- Les V_{ki} sont utilisés pour construire $\Gamma^{(i)}$

•
$$\Gamma^{SA} = \sum_{i} w_i \Gamma^{(i)}$$

• On minimise
$$E_{\rm SA} = \sum_{i} w_i \frac{\langle \Psi_i | \mathcal{H} | \Psi_i \rangle}{\langle \Psi_i | \Psi_i \rangle}$$

•
$$\chi^2 = \sum_i w_i \langle (E_L^{(i)} - \sum_k V_{ki} O_{ki}) \rangle_{\Psi_i^2}$$

- \blacksquare \Rightarrow Ensemble d'équations linéaires pour chaque état
- Les V_{ki} sont utilisés pour construire $\Gamma^{(i)}$

$$\Gamma^{SA} = \sum_{i} w_i \Gamma^{(i)}$$

• Γ^{SA} est diagonalisée \Rightarrow orbitales naturelles améliorées

MCSCF : C_2

	c_1	c_2	$\langle E \rangle$	σ^2
VMC				
$\mathcal{J}\Phi_0$	0.8862	-0.4633	-11.0036(6)	0.17
$\mathcal{J}\Phi_1$	0.4633	0.8862	-10.6805(18)	0.23
$\mathcal{J}\Phi_{0,\mathrm{MCSCF}}$	0.9357	-0.3528	-11.0123(9)	0.16
$\mathcal{J}\Phi_{1,\mathrm{MCSCF}}$	0.3528	0.9357	-10.7167(11)	0.18
DMC				
$\mathcal{J}\Phi_0$	0.8862	-0.4633	-11.0383(5)	0.18
$\mathcal{J}\Phi_1$	0.4633	0.8862	-10.7628(7)	0.24
$\mathcal{J}\Phi_{0,\mathrm{MCSCF}}$	0.9343	-0.3563	-11.0443(5)	0.16
$\mathcal{J}\Phi_{1,\mathrm{MCSCF}}$	0.3528	0.9357	-10.7803(6)	0.19

Expérimental 8.29 eV

- Expérimental 8.29 eV
- MR-CI 8.21 eV

- Expérimental 8.29 eV
- MR-CI 8.21 eV
- CAS(4,4)/DMC sans optimisation des orbitales

- Expérimental 8.29 eV
- MR-CI 8.21 eV
- CAS(4,4)/DMC sans optimisation des orbitales
- DMC : 6.92(6) eV

- Expérimental 8.29 eV
- MR-CI 8.21 eV
- CAS(4,4)/DMC sans optimisation des orbitales
- DMC : 6.92(6) eV
- CAS(4,4)/DMC avec optimisation des orbitales

- Expérimental 8.29 eV
- MR-CI 8.21 eV
- CAS(4,4)/DMC sans optimisation des orbitales
- DMC : 6.92(6) eV
- CAS(4,4)/DMC avec optimisation des orbitales
- DMC : 8.29(5) eV

Réduction de l'erreur des nœuds fixés
 Meilleures descriptions des états fondamentaux et excités au niveau DMC

- Réduction de l'erreur des nœuds fixés
 Meilleures descriptions des états fondamentaux et excités au niveau DMC
- Énergies d'excitations de qualité MR-CI

- Réduction de l'erreur des nœuds fixés
 Meilleures descriptions des états fondamentaux et excités au niveau DMC
- Énergies d'excitations de qualité MR-CI
- Très peu de CSF nécessaires

- Réduction de l'erreur des nœuds fixés
 Meilleures descriptions des états fondamentaux et excités au niveau DMC
- Énergies d'excitations de qualité MR-CI
- Très peu de CSF nécessaires
- Application à la GFP en cours...