QMC with large CI trial wave functions

A. Scemama, E. Giner, T. Applencourt, Y. Garniron, P.-F. Loos, M. Caffarel 18/07/2017

Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse, France

Wave function methods

Chlorine atom in cc-pVDZ

- 9 \uparrow and 8 \downarrow electrons in 19 MOs
- Full-CI: 92378 \uparrow determinants and 75582 \downarrow determinants
- 6.98 10⁹ possible Slater determinants
- The size of the Full-Cl space is huge, but the space is empty : $\sim 10^6$ coefficients $|c_k| > 10^{-12}$

 \implies Selected CI algorithm to select iteratively the most important Slater determinants

- 1969 Bender / Davidson *et al* : one-shot selection with perturbative criterion
- 1969 Whitten / Ackmeyer : Independently proposed the same criterion, but with iterative selection
- 1973 Malrieu *et al* : Add a PT2 calculation to the selected determinants (CIPSI)

Groups using/developing CIPSI independently since then

- Angeli, Cimiraglia, Persico : Italy
- Barone : Italy
- Illas, Rubio, Ricart : Spain
- Malrieu, Daudey, Spiegelman : France

Iterative selected CI has been re-invented many times.

Iterative selected CI has been re-invented many times.

Iterative selected CI has been re-invented many times.

Adaptative CI (Evangelista,2014)

Iterative selected CI has been re-invented many times.

CIPSI MRDCI (< 1980) Adaptative CI (Evangelista, 2014) Accelerated CI (Neese, 2015)

Iterative selected CI has been re-invented many times.

Iterative selected CI has been re-invented many times.

Iterative selected CI has been re-invented many times.

Heat-Bath CI (Holmes, 2016) Iterative CI (Liu, 2016)

All differ by the selection criterion and the implementation. but they refer to the same natural idea

1. Define a *reference* wave function:

$$|\Psi\rangle = \sum_{i\in\mathcal{D}} c_i |i\rangle$$
 $E_{var} = \frac{\langle \Psi|H|\Psi\rangle}{\langle \Psi|\Psi\rangle}$

.

1. Define a *reference* wave function:

$$|\Psi
angle = \sum_{i\in\mathcal{D}} c_i |i
angle \qquad E_{\mathsf{var}} = rac{\langle\Psi|H|\Psi
angle}{\langle\Psi|\Psi
angle}$$

2. Generate external determinants α :

$$\mathcal{A} = \left\{ (\forall i \in \mathcal{D}) \left(\forall \hat{T} \in \mathcal{T}_1 \cup \mathcal{T}_2 \right) : |\alpha\rangle = \hat{T} |i\rangle \right\}$$

1. Define a *reference* wave function:

$$|\Psi
angle = \sum_{i\in\mathcal{D}} c_i |i
angle \qquad E_{\mathsf{var}} = rac{\langle\Psi|H|\Psi
angle}{\langle\Psi|\Psi
angle}$$

2. Generate external determinants α :

$$\mathcal{A} = \left\{ (\forall i \in \mathcal{D}) \left(\forall \hat{T} \in \mathcal{T}_1 \cup \mathcal{T}_2 \right) : |\alpha\rangle = \hat{T} |i\rangle \right\}$$

3. Second order perturbative contribution of each |lpha
angle :

$$\Delta \textit{E}_{\alpha} = \frac{\langle \Psi | \hat{H} | \alpha \rangle \langle \alpha | \hat{H} | \Psi \rangle}{\textit{E}_{\mathsf{var}} - \langle \alpha | \hat{H} | \alpha \rangle}$$

1. Define a *reference* wave function:

$$|\Psi
angle = \sum_{i\in\mathcal{D}} c_i |i
angle \qquad E_{\mathsf{var}} = rac{\langle\Psi|H|\Psi
angle}{\langle\Psi|\Psi
angle}$$

2. Generate external determinants α :

$$\mathcal{A} = \left\{ (\forall i \in \mathcal{D}) \left(\forall \hat{T} \in \mathcal{T}_1 \cup \mathcal{T}_2 \right) : |\alpha\rangle = \hat{T} |i\rangle \right\}$$

3. Second order perturbative contribution of each |lpha
angle :

$$\Delta E_{\alpha} = \frac{\langle \Psi | \hat{H} | \alpha \rangle \langle \alpha | \hat{H} | \Psi \rangle}{E_{\mathsf{var}} - \langle \alpha | \hat{H} | \alpha \rangle}$$

4. Select the $|\alpha\rangle$'s with the largest ΔE_{α} and add them into \mathcal{D}

1. Define a *reference* wave function:

$$|\Psi
angle = \sum_{i\in\mathcal{D}} c_i |i
angle \qquad E_{\mathsf{var}} = rac{\langle\Psi|H|\Psi
angle}{\langle\Psi|\Psi
angle}$$

2. Generate external determinants α :

$$\mathcal{A} = \left\{ (\forall i \in \mathcal{D}) \left(\forall \hat{T} \in \mathcal{T}_1 \cup \mathcal{T}_2 \right) : |\alpha\rangle = \hat{T} |i\rangle \right\}$$

3. Second order perturbative contribution of each |lpha
angle :

$$\Delta E_{\alpha} = \frac{\langle \Psi | \hat{H} | \alpha \rangle \langle \alpha | \hat{H} | \Psi \rangle}{E_{\mathsf{var}} - \langle \alpha | \hat{H} | \alpha \rangle}$$

4. Select the $|\alpha\rangle$'s with the largest ΔE_{α} and add them into D5. Diagonalize \hat{H} in $D \Longrightarrow$ update $|\Psi\rangle$ and E_{var}

1. Define a *reference* wave function:

$$|\Psi
angle = \sum_{i\in\mathcal{D}} c_i |i
angle \qquad E_{\mathsf{var}} = rac{\langle\Psi|H|\Psi
angle}{\langle\Psi|\Psi
angle}$$

2. Generate external determinants α :

$$\mathcal{A} = \left\{ (\forall i \in \mathcal{D}) \left(\forall \hat{T} \in \mathcal{T}_1 \cup \mathcal{T}_2 \right) : |\alpha\rangle = \hat{T} |i\rangle \right\}$$

3. Second order perturbative contribution of each |lpha
angle :

$$\Delta E_{\alpha} = \frac{\langle \Psi | \hat{H} | \alpha \rangle \langle \alpha | \hat{H} | \Psi \rangle}{E_{\mathsf{var}} - \langle \alpha | \hat{H} | \alpha \rangle}$$

Select the |α⟩'s with the largest ΔE_α and add them into D
 Diagonalize Ĥ in D ⇒ update |Ψ⟩ and E_{var}
 Iterate

Energy (au)

Remarks

- When all $|\alpha\rangle{\rm 's}$ are selected the Full-CI is obtained
- CIPSI is more an *algorithm* than a *method*
- CIPSI can be seen as the deterministic counterpart of FCIQMC
- Any WF method can be realized with the CIPSI algorithm
- Rules on the generation of $|\alpha\rangle$'s define the wave function method (CISD, CAS, MRCI, \ldots)
- Rules on the selection of $|\alpha\rangle{\rm 's}$ define the person you need to cite for the trademark
- With the CIPSI selection, at any time $E_{PT2} = \sum_{\alpha} \Delta E_{\alpha}$ estimates the distance to the solution

Energy (au)

- 1. Initiator-like approximation : Generate only α determinants from the most important determinants (typically 99% of the norm) (Evangelisti, Chem. Phys., 1983). Typically \sim 2 000 generators for 10^7 determinants
- 2. Each α determinant is connected to only a subset of determinants of the wave function $\implies \Delta E_{\alpha}$ is done in *constant time* (Cimiraglia, JCP, 1985)
- 3. Evaluation of $H_{\alpha\alpha}$ needs 10 flops in the worst case : doesn't scale with the number of electrons (Cimiraglia, JCP, 1985)

- 1. Initiator-like approximation : Generate only α determinants from the most important determinants (typically 99% of the norm) (Evangelisti, Chem. Phys., 1983). Typically \sim 2 000 generators for 10^7 determinants
- 2. Each α determinant is connected to only a subset of determinants of the wave function $\implies \Delta E_{\alpha}$ is done in *constant time* (Cimiraglia, JCP, 1985)
- 3. Evaluation of $H_{\alpha\alpha}$ needs 10 flops in the worst case : doesn't scale with the number of electrons (Cimiraglia, JCP, 1985)

ROur contributions:

- 1. Initiator-like approximation : Generate only α determinants from the most important determinants (typically 99% of the norm) (Evangelisti, Chem. Phys., 1983). Typically \sim 2 000 generators for 10^7 determinants
- 2. Each α determinant is connected to only a subset of determinants of the wave function $\implies \Delta E_{\alpha}$ is done in *constant time* (Cimiraglia, JCP, 1985)
- 3. Evaluation of $H_{\alpha\alpha}$ needs 10 flops in the worst case : doesn't scale with the number of electrons (Cimiraglia, JCP, 1985)

KOur contributions:

- 1. Efficient implementation of Slater Condon's rules (ArXiv 2013)
- 2. Knowing that H_{ij} is zero can be done in 5.3 CPU cycles, \sim 50× faster than a random memory access
- Sorting : O(N log(N)) for mathematicians but O(N) for computer scientists (radix sort algorithm)

- Selection and PT2 scale *linearly* with the number of variational determinants
- Efficient hybrid stochastic PT2¹which converges to the exact (zero error) value in *finite* time. Error convergence rate is $O(1/t^{3.5})$.
- Selection is embarrassingly parallel (client/server task parallelism)
- Practical bottleneck is today the Davidson diagonalization (work in progress)

¹Hybrid stochastic-deterministic calculation of the MRPT2 Y. Garniron, A. Scemama, P.-F. Loos, M. Caffarel, *J. Chem. Phys.*, **147**, 034101, (2017).

Big picture: we can address the same problems as other seleted CI methods, including FCI-QMC.

These are *not* heroic runs but large runs:

- Cr₂ cc-pVQZ, 20 million dets + PT2, (JCP 2017)
- Butadiene, 60 million dets+PT2 (work in progress)
- FeO₄, def2-TZVPP, 50 million dets +PT2 (work in progress)
- $Cu_2O_2^{2+}$, 6-31G benchmark (work in progress)
- We could not do more than 60 million because of a stupid 32-bit integer limit in a library call (will be fixed soon)

CIPSI vs HCI

Copper, augmented ANO-TZ -1638.8 Selection on Variance Selection on Energy --1639.0 -1639.2 Energy (a.u.) -1639.4 -1639.6 -1639.8 -1640.0 -1640.2 10³ 10⁰ 10^{2} 10⁵ 10⁶ 10^{7} 10^{1} 10^{4} Number of determinants

Difference:

CIPSI : Energy minimization

HCI : Variance minimization

QMC

• Full-CI : post-Hartree-Fock method

 $^{^{2}\}mbox{To}$ see what these WFs give with a Jastrow, see Anouar Benali's talk on Friday.

Jastrow factors?

- Full-CI : post-Hartree-Fock method
- DMC : post-Full-CI method

 $^{^{2}\}mbox{To}$ see what these WFs give with a Jastrow, see Anouar Benali's talk on Friday.

Jastrow factors?

- Full-CI : post-Hartree-Fock method
- DMC : post-Full-CI method

What else?

 $^{^{2}\}mbox{To}$ see what these WFs give with a Jastrow, see Anouar Benali's talk on Friday.

Jastrow factors?

- Full-CI : post-Hartree-Fock method
- DMC : post-Full-CI method

What else?

So in this talk, I have used my favorite Jastrow factor²:

J = 1

²To see what these WFs give with a Jastrow, see Anouar Benali's talk on Friday.

 Ψ can be expressed in a bi-linear form³:

$$\Psi(\mathbf{R}) = \sum_{k}^{N_{\text{det}}} c_k \mathcal{D}_k = \sum_{i}^{N_{\text{det}\uparrow}} \sum_{j}^{N_{\text{det}\downarrow}} C_{ij} D_{i\uparrow}(\mathbf{R}_{\uparrow}) D_{j\downarrow}(\mathbf{R}_{\downarrow})$$
(1)

- $\mathbf{D}_{\uparrow}(\mathbf{R}_{\uparrow})$: vector of $N_{\mathrm{det}\uparrow}$ elements
- $D_{\downarrow}(R_{\downarrow})$: vector of $N_{\text{det}\downarrow}$ elements
- $C: N_{\text{det}\uparrow} \times N_{\text{det}\downarrow}$ matrix. The matrix contains N_{det} elements.
- ${\bf C}$ is constant in a QMC run \Longrightarrow preprocessing.

³QMC with very large multideterminant wavefunctions *J. Comput. Chem.*, **37:20**, 1866–1875, (2016).

Efficient scheme for CI wave functions in QMC

At every MC step, we need to evaluate: (\uparrow electrons and \downarrow electrons)

$$\Psi = (\mathbf{D}_{\uparrow}^{\dagger}(\mathbf{C})\mathbf{D}_{\downarrow})$$
 (2)

$$\nabla_i \Psi = \nabla_i \mathbf{D}_{\uparrow}^{\dagger} (\mathbf{C} \mathbf{D}_{\downarrow}) \operatorname{or} (\mathbf{D}_{\uparrow}^{\dagger} \mathbf{C}) \nabla_i \mathbf{D}_{\downarrow}$$
(3)

$$\Delta_{i}\Psi = \Delta_{i}\mathbf{D}_{\uparrow}^{\dagger}.(\mathbf{C}\mathbf{D}_{\downarrow}) \text{ or } (\mathbf{D}_{\uparrow}^{\dagger}\mathbf{C}).\Delta_{i}\mathbf{D}_{\downarrow}$$
(4)

$$V_{\text{pseudo}}^{\text{non-loc}} \Psi = V_{\text{pseudo}}^{\text{non-loc}} \mathbf{D}_{\uparrow}^{\dagger} . (\mathbf{C} \mathbf{D}_{\downarrow}) \text{ or } (\mathbf{D}_{\uparrow}^{\dagger} \mathbf{C}) . V_{\text{pseudo}}^{\text{non-loc}} \mathbf{D}_{\downarrow} (5)$$

- Only Ψ requires $\mathcal{O}(N_{det})$ operations (tiny prefactor)
- Others are $\mathcal{O}(N_{\text{elec}\uparrow} \times N_{\text{det}\uparrow}) \Longrightarrow$ expensive work is $\mathcal{O}(\sqrt{N_{\text{det}}})$

³QMC with very large multideterminant wavefunctions *J. Comput. Chem.*, **37:20**, 1866–1875, (2016).

Efficient scheme for CI wave functions in QMC

At every MC step, we need to evaluate: (\uparrow electrons and \downarrow electrons)

$$\Psi = (\mathbf{D}_{\uparrow}^{\dagger}(\mathbf{C})\mathbf{D}_{\downarrow})$$
 (2)

$$\nabla_{i}\Psi = \nabla_{i}\mathbf{D}_{\uparrow}^{\dagger}.(\mathbf{C}\mathbf{D}_{\downarrow}) \operatorname{or} (\mathbf{D}_{\uparrow}^{\dagger}\mathbf{C}).\nabla_{i}\mathbf{D}_{\downarrow}$$
(3)

$$\Delta_{i}\Psi = \Delta_{i}\mathbf{D}_{\uparrow}^{\dagger}.(\mathbf{C}\mathbf{D}_{\downarrow}) \text{ or } (\mathbf{D}_{\uparrow}^{\dagger}\mathbf{C}).\Delta_{i}\mathbf{D}_{\downarrow}$$
(4)

$$V_{\text{pseudo}}^{\text{non-loc}} \Psi = V_{\text{pseudo}}^{\text{non-loc}} \mathbf{D}_{\uparrow}^{\dagger} . (\mathbf{C} \mathbf{D}_{\downarrow}) \text{ or } (\mathbf{D}_{\uparrow}^{\dagger} \mathbf{C}) . V_{\text{pseudo}}^{\text{non-loc}} \mathbf{D}_{\downarrow} (5)$$

- Only Ψ requires $\mathcal{O}(N_{det})$ operations (tiny prefactor)
- Others are $\mathcal{O}(N_{\text{elec}\uparrow} \times N_{\text{det}\uparrow}) \Longrightarrow$ expensive work is $\mathcal{O}(\sqrt{N_{\text{det}}})$
- \bullet We can now use \sim 2 000 000 determinants in DMC.

³QMC with very large multideterminant wavefunctions *J. Comput. Chem.*, **37:20**, 1866–1875, (2016).

Back 30 years ago⁴:

C. ECP-QMC

For QMC we render the nonlocal ECP operator in a local form. This cannot in general be done exactly,¹⁷ but to a very good approximation this can be accomplished simply by allowing U^{ECP} to act on Ψ_{val} as implied in Eq. (6b). This leads to an additional term in the local energy, namely

$$U_{\text{Local}}^{\text{ECP}} = \sum_{\mathcal{A}} \sum_{i=1}^{N_{\text{val}}} \left(U_{i_{\max}+1}^{\mathcal{A}}(r_{i\mathcal{A}}) + \sum_{i=0}^{l_{\max}} \sum_{m=-i}^{l} Y_{lm}(\Omega_{i\mathcal{A}}) \right) \\ \times U_{l}^{\mathcal{A}}(r_{i\mathcal{A}}) \langle Y_{lm}(\Omega_{i\mathcal{A}}) | \Psi_{\text{val}} \rangle / \Psi_{\text{val}} \right),$$
(10)

where Ψ_{val} becomes the QMC valence importance function.

$$\langle Y_{lm}(\Omega_{i\mathcal{A}})|\Psi_{\text{val}}\rangle/\Psi_{\text{val}} = \sum_{j} D_{ji}^{-1} \langle Y_{lm}(\Omega_{i\mathcal{A}})|\phi_{j}(i)\rangle, \quad (11)$$

⁴Valence quantum Monte Carlo with abinitio effective core potentials B. Hammond, *et al*, *J. Chem. Phys.*, **87:2**, 1130–1136, (1987).

- $\langle Y_{lm}(\Omega_{iA}) | \Phi_j(i) \rangle$ can be computed analytically
- For efficiency: pre-computed on a grid
- No more quadrature points to compute
- No more need for "T-moves or not T-moves"
- Cost : Same as Laplacian ($\sim 15-20\%$ of a MC step)
- Of course, also applicable to single-determinant for DFT trial wave functions

Some results

1. $FCI/DMC - H_2O$

All-electron quasi-Full-Cl trial wave functions:

TABLE I. Number of determinants and corresponding variational energies for CIPSI expansions used in DMC for each cc-pCVnZ (n = 2 to 5) basis set. Last column: Deviations of the variational energy to the best FCI estimates of Almora-Diaz.²⁷ Energies in atomic units.

Basis set	FCI size	# dets used in DM	MC E_0^{var}	FCI, Almora-Dìaz ²⁷	Deviation
cc-pCVDZ	$\sim 10^{10}$	172 256	-76.282 136	-76.282865	0.0007
cc-pCVTZ	$\sim 2 \cdot 10^{14}$	640 426	-76.388 287	-76.390158	0.0018
cc-pCVQZ	$\sim 2 \cdot 10^{17}$	666 927	-76.419 324	-76.421 148	0.0018
cc-pCV5Z	$\sim 7 \cdot 10^{19}$	1 423 377	-76.428 550	-76.431 105	0.0025
	Basis set[Ndets	5] T	_{CPU} (Ndets)/T _{CPU} (1de	(t) E_0^{DMC}	
	cc-pCVDZ[172	2 256]	~101	-76.41571(20)	
	cc-pCVTZ[640426] cc-pCVQZ[666927]		~185	-76.431 82(19)	
			~128	-76.43622(14)	
	cc-pCV5Z[142	23 377]	~235	-76.437 44(18)	

⁴Toward an improved control of the FN error in QMC: The case of the water molecule, *J. Chem. Phys.*, **144**, 151103, (2016).

1. FCI/DMC — H_2O

TABLE III. Comparison of nonrelativistic ground-state total energies of water obtained with the most accurate theoretical methods. Energies in a.u.

Clark et al., ²⁰ DMC (upper bound)	-76.4368(4)
This work, DMC (upper bound)	-76.43744(18)
Almora-Dìaz, ²⁷ CISDTQQnSx (upper bound)	-76.4343
Helgaker et al., ²⁹ R12-CCSD(T)	-76.439(2)
Muller and Kutzelnigg, ³⁰ R12-CCSD(T)	-76.4373
Almora-Dìaz, ²⁷ FCI + CBS	-76.4386(9)
Halkier <i>et al.</i> , ³¹ CCSD(T) + CBS	-76.4386
Bytautas and Ruedenberg, ³² FCI + CBS	-76.4390(4)
This work, DMC + CBS	-76.43894(12)
Experimentally derived estimate ²⁵	-76.4389

⁴Toward an improved control of the FN error in QMC: The case of the water molecule, *J. Chem. Phys.*, **144**, 151103, (2016).

1. $FCI/DMC - H_2O$

⁴Toward an improved control of the FN error in QMC: The case of the water molecule, *J. Chem. Phys.*, **144**, 151103, (2016).

C ₂ , cc-pVTZ and VTZ-BFD					
	Energy			Number of determinants	
	C (a.u.)	C_2 (a.u.)	AE (kcal/mol)	С	C2
Hartree-Fock					
all-e	-37.6867	-75.4015	17.6	1	1
pseudo-	-5.3290	-10.6880	18.8	1	1
CIPSI					
all-e	-37.7810	-75.7852	140.1	3796	10 ⁶
pseudo-	-5.4280	-11.0800	140.6	3882	10 ⁶
DMC-HF					
all-e	-37.8293(1)	-75.8597(3)	126.3(2)	1	1
pseudo-	-5.4167(1)	-11.0362(3)	127.2(2)	1	1
DMC-CIPSI, $\epsilon = 10^{-6}$					
all-e	-37.8431(2)	-75.9166(2)	144.6(2)	3497	173553
pseudo-	-5.4334(1)	-11.0969(3)	144.3(2)	3532	231991
Estimated exact AE 147±2			147±2		

2. Pseudopotentials — F_2

F2, quasi-FCI / DMC

E (a.u.)

2. Pseudopotentials — F_2

F2, quasi-FCI / DMC

E (a.u.)

2. Pseudopotentials — Discussion

If the method used to generate Ψ_T is not size-consistent, the DMC will loose the property of additivity of the energies.

This effect is responsible for some of the Localization Error.

2. Pseudopotentials — Discussion

If the method used to generate Ψ_T is not size-consistent, the DMC will loose the property of additivity of the energies.

This effect is responsible for some of the *Localization Error*. A scheme for very large systems (low-quality Jastrow + Kohn-Sham determinant)

- Kohn-Sham determinant
- Use a Jastrow to reduce the fluctuations
- Localize the pseudopotentials only on the determinantal component
- The FN-DMC energy will no longer depend on the Jastrow, similarly to all-electron calculations
- Additivity of energies is conserved in H whatever the Jastrow
- No quadrature points to compute

Recent work of Mood and Lüchow⁵:

- Experiment: ${}^5\Delta$ ground state
- DFT : mostly ${}^5\Delta$, some ${}^5\Sigma$, Post-HF : ${}^5\Sigma$
- Single determinant DMC gives inaccurate results
- + Full optimization (Jastrow, CI, MOs) + FN-DMC confirms the $^5\Delta$ ground state
- What do we get with CIPSI?
- What do we get with CIPSI+DMC?

⁵Full WF optimization with QMC and its effect on the dissociation energy of FeS, K. H. Mood, A. Lüchow, *ArXiv*[physics.chem-ph]: 1702.06535v3

3. Dissociation of FeS

3. Dissociation of FeS

3. Dissociation of FeS

	Mood/Lüchow	This work		Exp.
Energies		$\sim 1 {\sf M}$ dets	Extrapolated to 8M	
5Σ	-134.0571(4)	-134.0638(4)	-134.0696(6)	
$^{5}\Delta$	-134.0579(4)	-134.0642(4)	-134.0714(6)	
Fe	-123.8126(4)	-123.8321(4)		
S	-10.1314(1)	-10.1325(3)		
D_0 (eV)	3.159(15)	2.770(17)	2.965(21)	3.25(15)
Frequencies		18 000	235 000 dets	
5Σ	518(7)	558(25)	535(38)	
$^{5}\Delta$	499(11)	542(37)	544(31)	518(5)
Equilibrium		18 000	235 000 dets	
⁵ Σ	2.00(1)	1.9882(3)	1.9933(4)	
$^{5}\Delta$	2.031(7)	2.0124(2)	1.9909(7)	2.017

- 1. quasi-Full-Cl wave functions:
 - DMC can be used as a "post-Full-CI" method
 - Black-box : no need to define a CAS
 - Results are reproducible and well defined
 - FCI is orbital-invariant and size-consistent
 - Fixed-node error is systematically improvable (Water)
 - Sensitivity to the basis set: atomization energies are always underestimated because atoms are described better than molecules, but less severly than in FCI

- 2. Pseudopotentials:
 - No numerical integration needed
 - No need for T-moves
 - Size-consistent wave functions : localization error behaves well (F2, FeS)

Perspectives

- 3. What can we do to reduce the dependence on the basis set?
 - CIPSI+Jastrow (E. Giner et al). See Anouar's talk on Friday.
 - Another old idea : basis functions at the middle of bonds
 - CI with range-separated DFT (E. Giner). LDA can play the role of the Jastrow. Preliminary results on F₂ increase the atomization energy by 2 kcal/mol:

R(Å)	CIPSI	LDA/CIPSI
4.0	-199.437(1)	-199.437(1)
1.4	-199.4867(6)	-199.4899(6)

- Combining Selected CI with f₁₂ (P. F. Loos) : very promising results
- These schemes are applicable to any post-HF method

Perspectives

4. What can we do for larger systems?

Quasi-Full-CI wave functions are too large. We can apply the selected CI algorithm to:

- CAS+SD: not size-consistent but very good nodes (careful with pseudos)
- MR-CCSD(T)⁶/ MR-(SC)2: PhD. thesis of Y. Garniron
- DD-CI: Excited states, magnetic systems
- B_k method method (Davidson *et al* 1981): Dress the Hamiltonian with the PT2 \implies diagonalize in the presence of the $|\alpha\rangle$
- JM-Heff-PT2: Effective Hamiltonian with a size-consistent MR-PT2 scheme (Giner, JCP 2017)
- Any other post-HF method

⁶Alternative definition of excitation amplitudes in state-specific MRCC,

Y. Garniron, E. Giner, J.-P. Malrieu, A. Scemama J. Chem. Phys., 146:15,

All calculations performed with our codes (open source, GitHub) :

- Quantum Package (Selected CI)
- QMC=Chem

Acknowledgments:

- Ken Jordan, Anouar Benali : invitation to the workshop
- Arne Lüchow : discussions on FeS
- J.-P. Malrieu : collaborations on wave function methods
- GENCI + CALMIP : Computational resources