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Wave function methods



Full-CI

Chlorine atom in cc-pVDZ

• 9 ↑ and 8 ↓ electrons in 19 MOs

• Full-CI: 92378 ↑ determinants and 75582 ↓ determinants

• 6.98 109 possible Slater determinants

• The size of the Full-CI space is huge, but the space is empty :

∼ 106 coefficients |ck | > 10−12

=⇒ Selected CI algorithm to select iteratively the most important

Slater determinants
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Brief history of Selected CI

1969 Bender / Davidson et al : one-shot selection with

perturbative criterion

1969 Whitten / Ackmeyer : Independently proposed the same

criterion, but with iterative selection

1973 Malrieu et al : Add a PT2 calculation to the selected

determinants (CIPSI)

Groups using/developing CIPSI independently since then

• Angeli, Cimiraglia, Persico : Italy

• Barone : Italy

• Illas, Rubio, Ricart : Spain

• Malrieu, Daudey, Spiegelman : France

2



Brief history of Selected CI

Iterative selected CI has been re-invented many times.

CIPSI

MRDCI (< 1980)

Adaptative CI

(Evangelista,2014)

Accelerated CI (Neese,

2015)

Heat-Bath CI (Holmes,

2016)

Iterative CI (Liu, 2016)

All differ by the selection

criterion and the implementation.

but they refer to the same

natural idea
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Selected CI algorithm

1. Define a reference wave function:

|Ψ〉 =
∑
i∈D

ci |i〉 Evar =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

2. Generate external determinants α:

A =
{

(∀i ∈ D)
(
∀T̂ ∈ T1 ∪ T2

)
: |α〉 = T̂ |i〉

}
3. Second order perturbative contribution of each |α〉 :

∆Eα =
〈Ψ|Ĥ|α〉〈α|Ĥ|Ψ〉
Evar − 〈α|Ĥ|α〉

4. Select the |α〉’s with the largest ∆Eα and add them into D
5. Diagonalize Ĥ in D =⇒ update |Ψ〉 and Evar

6. Iterate
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Evar − 〈α|Ĥ|α〉
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5. Diagonalize Ĥ in D =⇒ update |Ψ〉 and Evar

6. Iterate 4



Illustration

5



Remarks

• When all |α〉’s are selected the Full-CI is obtained

• CIPSI is more an algorithm than a method

• CIPSI can be seen as the deterministic counterpart of

FCIQMC

• Any WF method can be realized with the CIPSI algorithm

• Rules on the generation of |α〉’s define the wave function

method (CISD, CAS, MRCI, . . . )

• Rules on the selection of |α〉’s define the person you need to

cite for the trademark

• With the CIPSI selection, at any time EPT2 =
∑

α ∆Eα

estimates the distance to the solution
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Illustration
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Making CIPSI efficient

1. Initiator-like approximation : Generate only α determinants from the

most important determinants (typically 99% of the norm)

(Evangelisti, Chem. Phys., 1983). Typically ∼ 2 000 generators for

107 determinants

2. Each α determinant is connected to only a subset of determinants of

the wave function =⇒ ∆Eα is done in constant time (Cimiraglia,

JCP, 1985)

3. Evaluation of Hαα needs 10 flops in the worst case : doesn’t scale

with the number of electrons (Cimiraglia, JCP, 1985)

Our contributions:

1. Efficient implementation of Slater Condon’s rules (ArXiv 2013)

2. Knowing that Hij is zero can be done in 5.3 CPU cycles, ∼ 50×
faster than a random memory access

3. Sorting : O(N log(N)) for mathematicians but O(N) for computer

scientists (radix sort algorithm)
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Making CIPSI efficient

• Selection and PT2 scale linearly with the number of

variational determinants

• Efficient hybrid stochastic PT21which converges to the exact

(zero error) value in finite time. Error convergence rate is

O(1/t3.5).

• Selection is embarrassingly parallel (client/server task

parallelism)

• Practical bottleneck is today the Davidson diagonalization

(work in progress)

1Hybrid stochastic-deterministic calculation of the MRPT2

Y. Garniron, A. Scemama, P.-F. Loos, M. Caffarel, J. Chem. Phys., 147,

034101, (2017).
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What we can do today

Big picture: we can address the same problems as other seleted CI

methods, including FCI-QMC.

These are not heroic runs but large runs:

• Cr2 cc-pVQZ, 20 million dets + PT2, (JCP 2017)

• Butadiene, 60 million dets+PT2 (work in progress)

• FeO4, def2-TZVPP, 50 million dets +PT2 (work in progress)

• Cu2O2+
2 , 6-31G benchmark (work in progress)

• We could not do more than 60 million because of a stupid

32-bit integer limit in a library call (will be fixed soon)
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CIPSI vs HCI

Energy :
∑

α/∈D
〈Ψ|Ĥ|α〉〈α|Ĥ|Ψ〉
Evar−〈α|Ĥ|α〉

Variance :
∑

α/∈D〈Ψ|Ĥ|α〉〈α|Ĥ|Ψ〉

   -1640.2

   -1640.0

   -1639.8

   -1639.6
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   -1638.8
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E
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e
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y
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a
.u

.)

Number of determinants

Copper, augmented ANO-TZ

Selection on Variance
Selection on Energy

Difference:

CIPSI : Energy minimization HCI : Variance minimization
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QMC



Jastrow factors?

• Full-CI : post-Hartree-Fock method

• DMC : post-Full-CI method

What else?

So in this talk, I have used my favorite Jastrow factor2:

J = 1

2To see what these WFs give with a Jastrow, see Anouar Benali’s talk on

Friday.
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Efficient scheme for CI wave functions in QMC

Ψ can be expressed in a bi-linear form3:

Ψ(R) =

Ndet∑
k

ckDk =

Ndet↑∑
i

Ndet↓∑
j

CijDi↑(R↑)Dj↓(R↓) (1)

• D↑(R↑) : vector of Ndet↑ elements

• D↓(R↓) : vector of Ndet↓ elements

• C : Ndet↑ × Ndet↓ matrix. The matrix contains Ndet elements.

C is constant in a QMC run =⇒ preprocessing.

3QMC with very large multideterminant wavefunctions

J. Comput. Chem., 37:20, 1866–1875, (2016).
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Efficient scheme for CI wave functions in QMC

At every MC step, we need to evaluate: (↑ electrons and ↓ electrons)

Ψ = (D↑
†(C)D↓) (2)

∇iΨ = ∇iD↑
†.(CD↓) or (D↑

†C).∇iD↓ (3)

∆iΨ = ∆iD↑
†.(CD↓) or (D↑

†C).∆iD↓ (4)

V non−loc
pseudo Ψ = V non−loc

pseudo D↑
†
.(CD↓) or (D↑

†C).V non−loc
pseudo D↓ (5)

• Only Ψ requires O(Ndet) operations (tiny prefactor)

• Others are O(Nelec↑ × Ndet↑) =⇒ expensive work is O(
√

Ndet)

• We can now use ∼ 2 000 000 determinants in DMC.

3QMC with very large multideterminant wavefunctions

J. Comput. Chem., 37:20, 1866–1875, (2016).
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Pseudo-potentials

Back 30 years ago4:

4Valence quantum Monte Carlo with abinitio effective core potentials

B. Hammond, et al, J. Chem. Phys., 87:2, 1130–1136, (1987).

15



Pseudo-potentials

• 〈Ylm(ΩiA)|Φj(i)〉 can be computed analytically

• For efficiency: pre-computed on a grid

• No more quadrature points to compute

• No more need for “T-moves or not T-moves”

• Cost : Same as Laplacian (∼ 15− 20% of a MC step)

• Of course, also applicable to single-determinant for DFT trial

wave functions
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Some results



1. FCI/DMC — H2O

All-electron quasi-Full-CI trial wave functions:

4Toward an improved control of the FN error in QMC: The case of the water

molecule, J. Chem. Phys., 144, 151103, (2016).
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2. Pseudopotentials — C2

C2, cc-pVTZ and VTZ-BFD

Energy Number of determinants

C (a.u.) C2 (a.u.) AE (kcal/mol) C C2

Hartree-Fock

all-e -37.6867 -75.4015 17.6 1 1

pseudo- -5.3290 -10.6880 18.8 1 1

CIPSI

all-e -37.7810 -75.7852 140.1 3796 106

pseudo- -5.4280 -11.0800 140.6 3882 106

DMC-HF

all-e -37.8293(1) -75.8597(3) 126.3(2) 1 1

pseudo- -5.4167(1) -11.0362(3) 127.2(2) 1 1

DMC-CIPSI, ε = 10−6

all-e -37.8431(2) -75.9166(2) 144.6(2) 3497 173553

pseudo- -5.4334(1) -11.0969(3) 144.3(2) 3532 231991

Estimated exact AE 147±2
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2. Pseudopotentials — F2
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2. Pseudopotentials — Discussion

If the method used to generate ΨT is not size-consistent, the DMC

will loose the property of additivity of the energies.

This effect is responsible for some of the Localization Error.

A

scheme for very large systems (low-quality Jastrow + Kohn-Sham

determinant)

• Kohn-Sham determinant

• Use a Jastrow to reduce the fluctuations

• Localize the pseudopotentials only on the determinantal

component

• The FN-DMC energy will no longer depend on the Jastrow,

similarly to all-electron calculations

• Additivity of energies is conserved in H whatever the Jastrow

• No quadrature points to compute
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3. Dissociation of FeS

Recent work of Mood and Lüchow5:

• Experiment: 5∆ ground state

• DFT : mostly 5∆, some 5Σ, Post-HF : 5Σ

• Single determinant DMC gives inaccurate results

• Full optimization (Jastrow, CI, MOs) + FN-DMC confirms

the 5∆ ground state

• What do we get with CIPSI?

• What do we get with CIPSI+DMC?

5Full WF optimization with QMC and its effect on the dissociation energy of

FeS, K. H. Mood, A. Lüchow, ArXiv [physics.chem-ph]: 1702.06535v3
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3. Dissociation of FeS
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3. Dissociation of FeS

Mood/Lüchow This work Exp.

Energies ∼ 1M dets Extrapolated to 8M
5Σ -134.0571(4) -134.0638(4) -134.0696(6)
5∆ -134.0579(4) -134.0642(4) -134.0714(6)

Fe -123.8126(4) -123.8321(4)

S -10.1314(1) -10.1325(3)

D0 (eV) 3.159(15) 2.770(17) 2.965(21) 3.25(15)

Frequencies 18 000 235 000 dets
5Σ 518(7) 558(25) 535(38)
5∆ 499(11) 542(37) 544(31) 518(5)

Equilibrium 18 000 235 000 dets
5Σ 2.00(1) 1.9882(3) 1.9933(4)
5∆ 2.031(7) 2.0124(2) 1.9909(7) 2.017
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Summary

1. quasi-Full-CI wave functions:

• DMC can be used as a “post-Full-CI” method

• Black-box : no need to define a CAS

• Results are reproducible and well defined

• FCI is orbital-invariant and size-consistent

• Fixed-node error is systematically improvable (Water)

• Sensitivity to the basis set: atomization energies are always

underestimated because atoms are described better than

molecules, but less severly than in FCI

28



Summary

2. Pseudopotentials:

• No numerical integration needed

• No need for T-moves

• Size-consistent wave functions : localization error behaves

well (F2, FeS)
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Perspectives

3. What can we do to reduce the dependence on the basis set?

• CIPSI+Jastrow (E. Giner et al). See Anouar’s talk on Friday.

• Another old idea : basis functions at the middle of bonds

• CI with range-separated DFT (E. Giner). LDA can play the

role of the Jastrow. Preliminary results on F2 increase the

atomization energy by 2 kcal/mol:

R(Å) CIPSI LDA/CIPSI

4.0 -199.437(1) -199.437(1)

1.4 -199.4867(6) -199.4899(6)

• Combining Selected CI with f12 (P. F. Loos) : very promising

results

• These schemes are applicable to any post-HF method

30



Perspectives

4. What can we do for larger systems?

Quasi-Full-CI wave functions are too large. We can apply the selected CI

algorithm to:

• CAS+SD: not size-consistent but very good nodes (careful with

pseudos)

• MR-CCSD(T)6/ MR-(SC)2: PhD. thesis of Y. Garniron

• DD-CI: Excited states, magnetic systems

• Bk method method (Davidson et al 1981): Dress the Hamiltonian

with the PT2 =⇒ diagonalize in the presence of the |α〉
• JM-Heff-PT2: Effective Hamiltonian with a size-consistent MR-PT2

scheme (Giner, JCP 2017)

• Any other post-HF method

6Alternative definition of excitation amplitudes in state-specific MRCC,

Y. Garniron, E. Giner, J.-P. Malrieu, A. Scemama J. Chem. Phys., 146:15,

154107, (2017)

A Jeziorski-Monkhorst fully uncontracted MRPT treatment. E. Giner ,

C. Angeli , Y. Garniron , A. Scemama and J.-P Malrieu J. Chem. Phys.,

146:22, 224108, (2017)
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All calculations performed with our codes (open source, GitHub) :

• Quantum Package (Selected CI)

• QMC=Chem
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