# Millions of atoms in DFTB

Cristino

Anthony Scemama<sup>1</sup> <scemama@irsamc.ups-tlse.fr> Mathias Rapacioli<sup>1</sup> Nicolas Renon<sup>2</sup>

 <sup>1</sup> Labratoire de Chimie et Physique Quantiques IRSAMC (Toulouse)
 <sup>2</sup> CALMIP (Toulouse)

#### 30/09/2014

Université Paul Sabatier

TOULOUSE III

Large molecular systems:

- No chemistry can be done with a single point: need to calculate the energy for multiple geometries (dynamics, Monte Carlo, ...)
- Memory grows as  $\mathcal{O}(N^2$  )
- Computational complexity grows as  $\mathcal{O}(N^3)$
- Energy differences represent a very small fraction of the total energy -> approximations should be carefully controlled

The calculation of the energy needs to be *dramatically* accelerated.

Linear-scaling techniques are a very common and efficient solution:

- Linear-Scaling in storage : going from  $\mathcal{O}(N^2)$  to  $\mathcal{O}(N)$
- Linear-Scaling in operations : going from  $\mathcal{O}(N^3$  ) to  $\mathcal{O}(N)$

DFTB is well adapted to linear scaling techniques:

- No integrals to compute
- Minimal basis set (no diffuse functions)
- Larger systems are quite sparse

Linear scaling DFTB is not new, and is already available:

- DFTB+ : Divide and Conquer (Yang et al, 1991)
- CP2K : Matrix sign function
- ADF : Density-matrix based method

# Is "linear scaling" a goal?

Reducing flops is not *necessarily* good. For example:

```
do j=1,n
    do i=1,j
    dist1(i,j) = X(i,1)*X(j,1) + X(i,2)*X(j,2) + X(i,3)*X(j,3)
    end do
end do
do j=1,n
    do i=j+1,n
    dist1(i,j) = dist1(j,i)
    end do
end do
```

t(n=133) = 13.0  $\mu$ s, 3.0 GFlops/s t(n=4125) = 95.4 ms, 0.44 GFlops/s (Large is 6.8x less efficient)

```
do j=1,n
    do i=1,n ! <-- 2x more flops!
    dist3(i,j) = X(i,1)*X(j,1) + X(i,2)*X(j,2) + X(i,3)*X(j,3)
    end do
end do</pre>
```

t(n=133) = 10.3  $\mu$ s : 1.26x speed up, 8.2 GFlops/s

t(n=4125) = 15.7 ms : 6.07x speed up, 5.4 GFlops/s (Large is 1.5x less efficient)

With data aligned on a 256-bit boundary using compiler directives:

t(n=133) = 7.2  $\mu$ s : 1.80x speed-up, 12.1 GFlops/s t(n=4125) = 15.5 ms : 6.15x speed-up, 7.5 GFlops/s. (Large is 1.6x less efficient)

#### WARNING

Linear-scaling is a limit when *N* goes to infinity. What matters is the **wall time** in the useful range, and the control of the approximations.



Difficulties arising with Linear scaling:

- Computers are better at making flops than moving data in memory
- Reduction of the arithmetic intensity (nb of operations per loaded or stored byte) -> the bottleneck becomes data access
- Data access is never uniform (different levels of cache, hardware prefetching, etc) : NUMA (Non Uniform Memory Access)
- Scaling curves are linear only if the data access is uniform (uniformly good or uniformly bad)

#### Goal of this work

- Accelerate DFTB. Whatever the scaling, it has to be fast!
- OpenMP implementation: it will be so fast that MPI will be the bottleneck
- Large simulations have to fit in memory
- $\bullet\, {\rm Results}$  should be trusted when the  ${\cal O}(N^3$  )calculation can't be done
- Small simulations should not suffer from the optimizations for large systems

Two reasons for "million of atoms" in the title:

- An impressive title for this presentation
- Test our implementation for much larger systems than needed

Long term project:

- Investigate DNA hairpins in water, PAH/water interactions etc
- Add a layer of distributed parallelism for massively parallel Monte Carlo simulations

# Outline

- 1. Presentation of the algorithm
- 2. Hardware considerations
- 3. Technical implementation details
- 4. Benchmarks on boxes of liquid water

# **SCF Algorithm in DFTB**

The choice of the algorithm was not driven by the reduction of flops, but on the possibility of the hardware to be efficient at doing the calculation, even for medium-sized systems. We chose a MO-based formalism.

- 1. Generate an initial guess of local orbitals
- 2. Re-order the orbitals in packets of spatially close orbitals
- 3. Orthonormalize the guess
- 4. SCF steps
  - Instead of diagonalizing H, only cancel the occupied-virtual block (Brillouin's theorem, Stewart *et al*)
  - At every SCF iteration, the occupied-virtual block is approximately canceled
  - At convergence, the occupied-virtual block is zero to a given numerical precision

5. Re-orthonormalize MOs before computing the final energy

# **Initial guess**

The system is partitioned using a constrained variant of the k-means clustering algorithm:

- 1. A set of m centers (means) is first distributed evenly in the 3D-space
- 2. Each fragment is attached to its closest center, such that each center is connected to 4 molecules
- 3. The position of the centers is moved to the centroid of the connected fragments
- 4. Go back to step 2 until the partition doesn't change











- The atoms are then ordered by k-means centers
- k-means neighbours are centers with at least 2 atoms less than 20 a.u
- A non-SCC DFTB calculation is performed in parallel on each fragment
- All occupied MOs are packed together
- All virtual MOs are packed together

Remarks:

- MOs belonging to the same molecule are orthonormal
- MOs belonging to k-means centers which are not neighbours have a zero overlap
- MOs have non-zero coefficients only on basis functions which belong to the same molecule
- The orbitals are not orthonormal, but both the overlap (S) and the MO coefficient (C) matrix are sparse.

This step takes less than 1% of the total wall time.

# **Orthonormalization of the MOs**

Diagonalization of C<sup>†</sup> SC:

- 1. The C matrix is already stored sparse
- 2. Compute S (sparse) for each connected k-means groups (neighbours)
- 3. Compute C † SC (sparse)
- 4. Normalize using diagonal elements
- 5. Perform 1st order Jacobi-like rotations to remove the largest off-diagonal elements of  $\mathbf{C}^{\,\dagger}\,\mathbf{SC}$
- 6. Go back to step 3 until the largest off-diagonal element is below a threshold
  - $\bullet \mathbf{S}$  is calculated on the fly with  $\mathbf{C} \dagger \mathbf{S} \mathbf{C}$
  - Orthonormalization takes 40-50% of the total wall time.
  - Bottleneck: C † SC

## Parallel implementation of orbital rotations

Difficulty: each MO can be rotated only by one thread at at a time.

- First, dress the list of rotations to do.
- Prepare a 1D-array of OpenMP locks, (one lock for each MO).
- All CPUs do at the same time:
  - 1. Pick the next rotation (*i*, *j*)
  - 2. If rotation (*i*, *j*) is already done, go to step 1
  - 3. Try to take lock *i*. If not possible, go to step 1
  - 4. Try to take lock j
  - 5. If not possible, free lock *i* and go to step 1
  - 6. Rotate i and j and mark (i, j) as done
  - 7. Free locks *i* and *j*
  - 8. Go back to step 1 until all rotations are done

## SCF steps

Partial diagonalization of  $\mathbf{C} \dagger \mathbf{H} \mathbf{C}$ 

- 1. The C matrix is already stored sparse
- 2. Compute H(sparse)
- 3. Compute C † HC (sparse)
- 4. Perform exact Jacobi rotations to preserve orthonormality, but with approximate angles: C † HC is not updated after a rotation
- 5. Go back to step 3 until the largest off-diagonal element is below a threshold
  - $\bullet\,\mathbf{H}$  is calculated on the fly with  $C\,^{\dagger}\,\mathbf{H}C$

This step can be safely performed in single precision

- data is 2x smaller, so data bandwidth is virtually 2x larger
- caches contain 2x more elements
- vectorization is 2x more efficient.

- Exact Jacobi rotations are performed to preserve orthonormality, but with approximate angles: C + HC is not updated after a rotation.
- Rotations are done only in the occupied-virtual MO block
- Occupied MOs don't rotate between each other
- Virtual MOs don't rotate between each other
- The locality of occupied and virtual MOs is preserved
- MO rotations represent 3-6% of the total wall time
- Adding the C  $\dagger$  HC step yields 33-40%

#### **General hardware considerations**



21



nanoseconds

#### Measures obtained with LMbench

1 cycle = 0.29 ns, 1 peak flop SP = 0.018 ns

| Integer (ns)        | bit    | ADD  | ML  | ١L         | DIV  |     | MOD  |
|---------------------|--------|------|-----|------------|------|-----|------|
| 32 bit              | 0.3    | 0.04 | 0.9 | )          | 6.7  |     | 7.7  |
| 64 bit              | 0.3    | 0.04 | 0.9 |            | 13.2 |     | 12.9 |
| Floating Point (ns) |        | ADD  |     | MUL        | DIV  |     | V    |
| 2 bit               |        | 0.9  |     | 1.5        |      | 4.4 |      |
| 64 bit              |        | 0.9  | 1.5 |            | 6.   |     | 8    |
| Data read (ns)      | Random |      |     | Prefetched |      |     |      |
| L1 cache            | 1.18   |      |     | 1.18       |      |     |      |
| L2 cache            | 3.5    |      | 1.6 |            |      |     |      |
| L3 cache            | 13     |      | 1.7 |            |      |     |      |
| Memory on socket    | 75-80  |      |     | 3.         |      |     |      |

LMBench : http://www.bitmover.com/Imbench/

# Strategy to optimize shared-memory access

Low aritmetic intensity : Bring the data to the CPU cores as fast as possible

- Reduce storage as much as possible, and re-compute
- Avoid thread migration and allocate/initialize memory locally in parallel regions (first-touch policy)
- Every thread uses as much as possible memory which is close
- Use stride-1 access as much as possible to benefit from prefetching
- Reuse data which is in the caches
- Avoid to synchronize threads
- Static scheduling keeps the access to close memory and avoids thread communication

### **Sparse storage**

- Every column contains at least one non-zero element
- List of lists allows a direct indexing on the columns



Takes a little more memory than CSR or CSC, but:

- Columns can be easily expanded or contracted
- $\bullet$  Leading dimension of  $V_{\rm val} {\rm is\ fixed}$  :  $LD \,{=}\, \alpha \,{\times} 512 \,{+}\, 24$

 $\bullet \alpha \times 512$ 

- each column is 256 bit-aligned and starts at the beginning of a cache line
  - optimized data access
  - enables vectorization of small data fragments
- two columns start on distinct memory pages : prefetch only the columns
- •24 : Avoid 4k aliasing (round-robin over the cache lines)
- $V_{
  m ind}$  has LD+1 elements (start at zero) : reduced 4k aliasing

Total memory usage:

- 982 GiB for 504 896 water molecules (1.5 million atoms)
- •680 KiB per atom

# Dense x Sparse Matrix Product from QMC=Chem

 $\mathcal{O}(N^2)$  with a very small prefactor.

Inner-most loops, analyzed with MAQAO :

- Perfect ADD/MUL balance
- Does not saturate load/store units
- Only vector operations with no peel/tail loops
- Uses 15 AVX registers. No register spilling
- If all data fits in L1, 100% peak is reached (16 flops/cycle)
- In practice: memory bound, so 50-60% peak is measured.

**MAQAO: Modular assembler quality Analyzer and Optimizer for Itanium 2** L.Djoudi, D.Barthou, P.Carribault, C.Lemuet, A.-T.Acquaviva, and W.Jalby, *Workshop on EPIC Architectures and Compiler Technology*, San Jose, (**2005**).

**QMC** for large chemical systems: Implementing efficient strategies for petascale platforms and beyond A.Scemama, M.Caffarel, E.Oseret, W.Jalby, *J. Comput. Chem.*, 34:11(938--951) (2013).

```
kmax1 = min(indices(0),n_basis)
kmax2 = kmax1 - mod(kmax1, 4)
do kao=0, kmax2-1, 4
 idl = indices(kao+1) ; dl = values(kao+1)
 id2 = indices(kao+2); d2 = values(kao+2)
 id3 = indices(kao+3); d3 = values(kao+3)
 id4 = indices(kao+4); d4 = values(kao+4)
  !DEC$ VECTOR ALWAYS
  !DIR$ VECTOR ALIGNED
 do j=1,16
     C(j) = C(j) + A(j,id1)*d1 + A(j,id2)*d2 \&
                 + A(j,id3)*d3 + A(j,id4)*d4
 end do
end do
```

Efficient sparse x sparse matrix product in deMon-Nano: Represent one sparse matrix as a collection of small dense sub-matrices.



Each thread computes 16 columns of C † SC



Data layout is SC(16, 16, N/16) : All 16x16 matrices are 256-bit aligned and fit in L1 cache. 100% vectorized

Each thread computes 16 columns of C † SC



Data layout is SC(16, 16, N/16) : All 16x16 matrices are 256-bit aligned and fit in L1 cache. 100% vectorized

Each thread computes 16 columns of  $\mathbf{C}$  †  $\mathbf{SC}$ 



Data layout is SC(16, 16, N/16) : Fast in-place transposition in cache

Each thread computes 16 columns of  $\mathbf{C} \dagger \mathbf{S} \mathbf{C}$ 



Data layout is SC(16, 16, N/16) : Fast in-place transposition in cache

## **Benchmarks**



Boxes of water from 384 to 504 896 water molecules.

Two machines:

- Dual-socket Intel Xeon E5-2670, 8c @ 2.6GHz, Hyperthreading on, Turbo on, 64GiB RAM
- •SGI Altix UV, large SMP machine : 384 cores and 3TiB RAM. *Enormous* NUMA effects.

## **SGI** Altiv UV

24 blades: 2x8 cores, 128 GB RAM, connected with NUMAlink Single OS, shared memory, 384 cores, 3 TB RAM



#### NUMAlink : (latency: 195 - 957 ns, 2-10x larger than a standard server)

UVPROD : Latency socket 0 to all



## Parallel speed-up of (CXC)

#### Dual-socket server (16 cores):



Altix-UV :



## Wall time of CXC

Dual-socket server (16 cores):





# **Global scaling**

#### Dual-socket server (16 cores):



41





Observed scaling is not linear:

• The  $\mathcal{O}(N^2$  )behavior comes from the  $\gamma_{\alpha \xi}\!\sim\! 1/|R_{\alpha}-\!R_{\xi}|{\rm terms}$  in the Hamiltonian:

$$H_{\mu
u} \!=\! H^0_{\mu
u} \!+\! rac{1}{2} S_{\mu
u} \!\sum_{\xi}^{N_{
m atoms}} (\gamma_{lpha\xi} \!+\! \gamma_{eta\xi}) (q_{\xi} \!-\! q_{\xi}^0 )$$

- For accurate results, it is important not to truncate 1/R.
- Very efficiently parallelized
- However, this quadratic scaling appears for large sizes

| 16 cores, 100 000 atoms    | 10% of total time |
|----------------------------|-------------------|
| 128 cores, 1 500 000 atoms | 18% of total time |

- We see it because all the rest is very fast!
- Could be improved by computing only the contributions where the charges have changed

# **Error control**

#### For 3312 water molecules

| SCF convergence   | $\epsilon = 10^{-5}$ | $\epsilon = 10^{-6}$ |
|-------------------|----------------------|----------------------|
| E(DSYGVD)         | -13495.30553 928     | -13495.306178 32     |
| E(deMon-Nano)     | -13495.30553 764     | -13495.306178 28     |
| Error             | 1.2e-10              | 3.0e-12              |
| t(DSYGVD) (s)     | 9 636.1              | 10 612.1             |
| t(deMon-Nano) (s) | 149.8                | 259.0                |

- Converges to the correct value
- Error of the method below the SCF convergence error

For 1 million water molecules, the total energy is  $\sim$  -4.7e6 a.u. To get the chemical accuracy with 1 million water molecules, we need a precision of 1e-9 a.u per molecule: an absolute error of 2.5e-10

# **Comparison with CP2K**



Comparison is not quantitative: different architectures, different method, different number of SCF cycles

Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase J. VandeVondele, U. Borštnik, J. Hutter, JCTC, 8 (10), 3565-3573 (2012)

- deMon-Nano exploits very well the hardware, especially for medium-sized systems
- Wall time is better with CP2K for a single point with millions of atoms, because it can use >9000 cores
- MPI communications are indeed important in CP2K (2s / atom)
- Latency of Numalink of Altix-UV is 1.5-3x lower than MPI/Infiniband
- Hardware memory prefetchers make automatically asynchronous inter-blade communications

# Conclusion

- We have accelerated deMon-Nano
- Parallel speedup is satisfactory
- Scaling is not linear, but our implementation is very efficient in the useful range (->100 000 atoms)
- More and more cores/node -> Buying a newer machine will make the code run faster
- Doesn't require petascale computers and expensive hardware for standard simulations
- Results equivalent to diagnonalization, error below SCF threshold.
- Approximations below chemical accuracy for one million atoms.

Project for the next years:

Distributed large scale computations (EGI grid?, PRACE?, etc) for Monte Carlo simulations of DNA in water.

A Sparse SCF algorithm and its parallel implementation: Application to DFTB

A.Scemama, N.Renon, M.Rapacioli, J. Chem. Theor. Comp., 10:6(2344-2354), (2014).