
An efficient implementation of Slater-Condon rules for

determinant-driven calculations

Anthony SCEMAMA, Emmanuel GINER

Laboratoire de Chimie et Physique Quantiques, CNRS-IRSAMC, Université de Toulouse

Abstract Slater-Condon rules are at the heart of any quantum chemistry method as they allow to simplify 3N -dimensional integrals as sums of 3- or 6-dimensional integrals. We propose
an efficient implementation of those rules in order to identify very rapidly which integrals are involved in a matrix element expressed in the determinant basis set. This implementation takes
advantage of the bit manipulation instructions on x86 architectures that were introduced in 2008 with the SSE4.2 instruction set. Finding which spin-orbitals are involved in the calculation of a
matrix element doesn’t depend on the number of electrons of the system.

Slater-Condon rules

We consider wave functions Ψ expressed as linear combinations of
Slater determinants D of orthonormal spin-orbitals φ(r):

Ψ =
∑

i

ciDi (1)

Using the Slater-Condon rules, the matrix elements of any one-body
(O1) or two-body (O2) operator expressed in the determinant space
have simple expressions involving one- and two-electron integrals in
the spin-orbital space. The diagonal elements are given by:

〈D|O1|D〉 =
∑

i∈D

〈φi|O1|φi〉 (2)

〈D|O2|D〉 =
1

2

∑

(i,j)∈D

〈φiφj|O2|φiφj〉 − 〈φiφj|O2|φjφi〉

For two determinants which differ only by the substitution of spin-
orbital i with spin-orbital j:

〈D|O1|D
j
i 〉 = 〈φi|O1|φj〉 (3)

〈D|O2|D
j
i 〉 =

∑

k∈D

〈φiφk|O2|φjφk〉 − 〈φiφk|O2|φkφj〉

For two determinants which differ by two spin-orbitals:

〈D|O1|D
jl
ik〉 = 0 (4)

〈D|O2|D
jl
ik〉 = 〈φiφk|O2|φjφl〉 − 〈φiφk|O2|φlφj〉

All other matrix elements involving determinants with more than two
substitutions are zero.

An efficient implementation of those rules requires:

1. to find the number of spin-orbital substitutions between two deter-
minants

2. to find which spin-orbitals are involved in the substitution

3. to compute the phase factor if a reordering of the spin-orbitals has
occured

Algorithm

We use the convention that the least significant bit of binary integers is
the rightmost bit. As the position number of a bit in an integer is the
exponent for the corresponding bit weight in base 2, the bit positions
are numbered from the right to the left starting at position 0. To be
consistent with this convention, we also represent the arrays of 64-bit
integers from right to left, starting at position zero. Following with
the usual notations, the spin-orbitals start with index one.

Binary representation of the determinants

The molecular spin-orbitals in the determinants are ordered by spin:
the α spin-orbitals are placed before the β spin-orbitals. Each determi-
nant is represented as a pair of bit-strings: one bit-string corresponding
to the α spin-orbital occupations, and one bit-string for the β spin-
orbital occupations. When the i-th orbital is occupied by an electron
with spin σ in the determinant, the bit at position (i − 1) of the σ
bit-string is set to one, otherwise it is set to zero.

The pair of bit-strings is encoded in a 2-dimensional array of 64-bit
integers. The first dimension contains Nint elements and starts at
position zero. Nint is the minimum number of 64-bit integers needed
to encode the bit-strings:

Nint = ⌊NMOs/64⌋ + 1 (5)

where NMOs is the total number of molecular spin-orbitals with spin
α or β (we assume this number to be the same for both spins). The
second index of the array corresponds to the α or β spin. Hence,
determinant Dk is represented by an array of Nint 64-bit integers I

k
i,σ,

i ∈ [0, Nint − 1], σ ∈ {1, 2}.

Finding the number of substitutions

The number of substitutions between determinants D1 and D2 is
equivalent to the degree of excitation d of the operator T̂d which
transforms D1 into D2 (D2 = T̂dD1). This is the number of holes
created in D1 or the number of particles created in D2.

On line 4 of algorithm 1, (I1i,σ xor I2i,σ) returns a 64-bit integer with

bits set to one where the bits differ between I1i,σ and I2i,σ. Those
correspond to the positions of the holes and the particles. The popcnt
function returns the number of non-zero bits in the resulting integer.
At line 5, two d contains the sum of the number of holes and particles,
so the excitation degree d is half of two d.

Algorithm 1: Degree of excitation between D1 and D2.

Function n excitations(I1, I2)

Input: I1, I2: lists of integers representing D1 and D2.

Output: d: Degree of excitation.

1 two d ← 0;

2 for σ ∈ {α, β} do
3 for i← 0 to Nint − 1 do

4 two d← two d+ popcnt (I1i,σ xor I2i,σ);

5 d← two d/2;

6 return d;

The popcnt instruction was introduced in the hardware of the x86 64
processors with the SSE4.2 instruction set. This instruction has a 3-
cycle latency and a 1-cycle throughput independently of the number
of bits set to one (here, independently of the number of electrons).
The popcnt instruction may be generated by Fortran compilers via the
intrinsic popcnt function.

Identifying the substituted spin-orbitals

Algorithm 2 creates the list of spin-orbital indices containing the holes
of the excitation from D1 to D2. At line 4, H is is set to a 64-bit
integer with ones at the positions of the holes. The loop starting at
line 5 translates the positions of those bits to spin-orbital indices as
follows: when H 6= 0, the index of the rightmost bit of H set to one
is equal to the number of trailing zeros of the integer. This number
can be obtained by the x86 64 bsf (bit scan forward) instruction with
a latency of 3 cycles and a 1-cycle throughput, and may be generated
by the Fortran trailz intrinsic function. At line 7, the spin-orbital
index is calculated. At line 8, the rightmost bit set to one is cleared
in H .

0000000011111111 : D1

0010010010101111 : D2

0010010001010000 : D1 xor D2

0000000001010000 : (D1 xor D2) and D1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0010010000000000 : (D1 xor D2) and D2

Algorithm 2: List of orbital indices corresponding to holes in the
excitation from D1 to D2

Function get holes(I1, I2);

Input: I1, I2: lists of integers representing D1 and D2.

Output: Holes: List of positions of the holes.

1 for σ ∈ {α, β} do
2 k ← 0;

3 for i← 0 to Nint − 1 do

4 H←
(

I1i,σ xor I2i,σ

)

and I1i,σ;

5 while H 6= 0 do

6 position ← trailing zeros(H);

7 Holes[k, σ] ← 1 + 64× i + position;

8 H← bit clear(H, position);

9 k← k + 1;

10 return Holes;

Computing the phase

In our representation, the spin-orbitals are always ordered by increas-
ing index. Therefore, a reordering may occur during the spin-orbital
substitution, involving a possible change of the phase.

As no more than two substitutions between determinants D1 and D2
give a non-zero matrix element, we only consider in algorithm 3 single
and double substitutions. The phase is calculated as −1Nperm, where
Nperm is the number permutations necessary to bring the spin-orbitals
on which the holes are made to the positions of the particles. This
number is equal to the number of occupied spin-orbitals between these
two positions.

We create a bit mask to extract the occupied spin-orbitals placed be-
tween the hole and the particle, and we count them using the popcnt
instruction. We have to consider that the hole and the particle may
or may not not belong to the same 64-bit integer. For a double exci-
tation, if the realization of the first excitation introduces a new orbital
between the hole and the particle of the second excitation (crossing of
the two excitations), an additional permutation is needed.

Algorithm 3: Compute the phase factor of 〈D1|O|D2〉

Function GetPhase(Holes, Particles)

Input: Holes and Particles obtained with alorithm 2

Output: phase ∈ {−1, 1}.

1 Requires: n excitations(I1, I2) ∈ {1, 2}. Holes and Particles
are sorted.

2 nperm← 0;

3 for σ ∈ {α, β} do
4 nσ ← Number of excitations of spin σ;

5 for i← 0 to nσ − 1 do

6 high← max(Particles[i, σ], Holes[i, σ]);

7 low← min(Particles[i, σ], Holes[i, σ]);

8 k← ⌊high/64⌋;

9 m← high (mod 64);

10 j← ⌊low/64⌋;

11 n← low (mod 64);

12 for l← j to k − 1 do

13 mask[l] ←not(0);

14 mask[k] ← 2m − 1;

15 mask[j] ← mask[j] and (not(2n+1)+1)

16 for l← j to k do

17 nperm← nperm+popcnt(I
j,σ
1 and mask[l]);

18 if (nσ = 2) and (Holes[2, σ] < Particles[1, σ] or Holes[1, σ]
> Particles[2, σ]) then

19 nperm← nperm + 1;

20 return −1nperm;

Results

The presented algorithms were implemented in Fortran. Two systems
made of 10 000 determinants were benchmarked. One is a water
molecule in the cc-pVTZ basis set (Nint = 2) and the other is is a
Copper atom in the cc-pVDZ basis set (Nint = 1). The benchmark
consists in comparing each determinant with all the derminants (108

determinant comparisons). These comparisons are central in determi-
nant driven calculations, such as the calculation of the Hamiltonian in
the determinant basis set. As a practical example, we benchmark the
calculation of the one-electron density matrix on the MO basis.

CPU Time (s) Average # CPU Cycles
AVX SSE2 AVX SSE2

H2O (10 e−, 105 MOs)
n excitations 0.33 2.33 10.2 72.6
get excitation 0.60 2.63 18.4 81.4
get excitation, d = 0 6.2 58.7
get excitation, d = 1 53.0 126.3
get excitation, d = 2 88.9 195.5
get excitation, d > 2 6.7 63.6
Density matrix 0.19 1.23 11.7 75.7
Cu (29 e−, 49 MOs)
n excitations 0.17 1.13 5.3 35.2
get excitation 0.28 1.27 8.7 39.1
get excitation, d = 0 4.9 30.4
get excitation, d = 1 47.0 88.1
get excitation, d = 2 78.8 145.5
get excitation, d > 2 5.5 29.3
Density matrix 0.10 0.63 6.5 38.9

For comparison, on the same system
L1 latency 4
L2 latency 12
32-bit FP division 15
64-bit FP division 23
32-bit Integer division 23
64-bit Integer division 45
L3 latency 45
RAM latency 260

Benchmark system: Intel Xeon CPU E3-1220 @ 3.10GHz.
The source files of this benchmark are available for download here:
https://github.com/scemama/slater_condon

