Parallel programm

Nicolas Renon
CALMIP (Toulouse)

Anthony Scemama <scemama@irsamc.ups-tise.fr>
http://scemama.mooo.com

Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Universite
Paul Sabatier

TOULOQUSE 111

dépassar e frontiéras |

Intro

All the source files of this course can be found on GitHub:
http://github.com/scemama/tccm2014

Warning

You are not expected to be able to do by yourself everything | will show!

My goal:

« Show you different visions of parallel computing
* Introduce some words you will here in the future

* Show you what exists, what can be done, and how
Don't panic and consider this class as general knowledge.

If you don't understand something, please STOP ME!

http://github.com/scemama/tccm2014

What is parallelism?

When solving a problem, multiple calculations can be carried out concurrently. If

multiple computing hardware is used, concurrent computing is called parallel
computing.

Many levels of parallelism:

* Distributed, Loosely-coupled : Computing grids : shell scripts

* Distributed, Tightly-coupled : Supercomputers : MPI, sockets, CoArray Fortran,
UPC,...

* Hybrid: wth accelerators like GPUs, FPGAs, Xeon Phi, etc
* Shared memory : OpenMP, threads

» Socket-level : Shared cache

* Instruction-level : superscalar processors

* Bit-level : vectorization

All levels of parallelism can be exploited in the same code, but every problem is
not parallelizable at all levels.

2

Index

Intro

What is parallelism?

Problem 1 : Potential energy surface
GNU Parallel
Potential energy surface
Links

Problem 2 : Computation of Pi

Inter-process communication
Processes vs threads
Communication with named pipes
Communication with unnamed pipes
Sockets
Remote procedure call (RPC)

© N DN B

14
20
21
26
26
27
31
46
62

Problem 3 : Numerical computation of a 2-electron integral 84

Message Passing Interface 87
Synchronization 89
Point-to-point send/receive operation 89
Collective communications 90
Two-electron integral using MPI 93
Links 101

Coarray Fortran (CAF) 102
Calculation of the 2-electron integral 104
Links 109

Problem 4: Parallelization of a matrix product 110

Threads 118
pthreads 118
Locks 121

OpenMP
Matrix product : simple OpenMP example
Loop parallelism
Task parallelism
Divide and Conquer algorithms
Example : Sum
Divide and Conquer matrix product
Vectorization
Automatic vectorization
Intel specific Compiler directives
Instruction-level parallelism (ILP)
Pipelining
Out of order execution
Branch prediction

125
128
128
135
142
142
147
159
160
162
166
167
170
170

Links 172
Summary 174

Problem 1 : Potential energy surface

We want to create the CCSD(T) potential energy surface of the water molecule.

n rz

762 - -76.2

[y -76.22
854 | 7624
£76.26 -76.26
-76.28 -76.28
-/6.3 -76.3
7632
-76.32
-76.34 76,34

0.8

Constraints:

« \We want to compute 25x25x25 = 15625 points

*\We are allowed to use 100 CPU cores simultaneously

* \We like to use Gaussian09 to calculate the CCSD(T) energy
But:

* The grid points are completely independent

* Any CPU core can calculate any point
Optimal solution: work stealing

* One grid point is E(r1,r2,angle)

*Dress the list of all the arguments (rl1,r2,angle) : [(0.8,0.8,70.), ...,
(1.1,1.1,140.)] (the queue)

«Each CPU core, when idle, pops out the head of the queue and computes
E(rl,r2,angle)

* All the results are stored in a single file
» The results are sorted for plotting

GNU Parallel

GNU parallel executes Linux commands in parallel and can guarantee that the
output is the same as if the commands were executed sequentially.

Example:

$ parallel echo ::: ABC
A
B
C

IS equivalent to:
$ echo A; echo B; echo C
Multiple input sources can be given:

$ parallel echo ::: AB::: CD
A C
A D

B C
B D

If no command is given after parallel the arguments are treated as commands:

$ parallel ::: pwd hostnane "echo $TMPDI R
/ honme/ scemana
| pqdh82

[t
Jobs can be run on remote servers:

$ parallel ::: echo hostnane
| pqdh82. ups-tlse. fr

$ parallel -S |pglx139.ups-tlse.fr ::: echo hostnane
| pgl x139. ups-tlse.fr

File can be transfered to the remote hosts:

10

$ echo Hel |
$ parall el
cat: input:

$ echo Hel |
$ parall el
Hel | o

11

o > i nput
-S I pql x139. ups-tlse.fr cat ::: input
No such file or directory

0 > i nput
-S | pgl x139. ups-tlse.fr --transfer --cleanup cat

I nput

Convert thousands of images from .gif to .jpg

$1Is

I mg1000.gif ing241l.gif 1ng394.gif ing546.qgif 1ng699.gif ing850.qif
I mg1l001.gif ing242.gif 1ng395.gif ing547.9if 1ng69.qif I mg851. gi f
[...]

I ng23. gi f i mg392.gif ingb544.gif ing697.gif 1ng849.qif

I mg240. gi f I my393.gif 1ing545.gif 1 ng698.gif 1ing84.gif

To convert one .gif file to .jpg format:

$ tine convert ingl.gif ingl.jpg
real OnD. 008s
user OnD. 000s
SYysS OnD. 000s

Sequential execution:

$tine for i in {1..1011}
> do

> convert inmg${i}.gif inmg${i}.jpg

12

> done

real Onv. 936s
user OnD. 210s
SYyS OnD. 270s

Parallel execution on a quad-core:

$ tine parallel convert {.}.gif {.}.jpg :::

real OnR. 051s
user Onil. 000s
SYyS OnD. 540s

13

* gif

Potential energy surface

1. Fetch the energy in an output file

Running a CCSD(T) calculation with Gaussian09 gives the energy somewhere in
the output:

CCSD(T) = -0.76329294074D+02
To get only the energy in the output, we can use the following command:
g09 < input | grep " CCsDXT)=" | cut -d "=" -f 2

2. Script that takes r1, r2 and angle as arguments

We create a script run_h2o.sh that runs Gaussian09 for the water molecule taking

r o and angle as command-line parameters, and prints the CCSD(T) energy:
#!'/ bi n/ bash

r1=%1

14

r2=%$2

angl e=$3

Create Gaussian input file, pipe it to Gaussian,
energy

cat << EOF | g09 | grep "~ CCSD(T)=" | cut -d "=" -f

CCSD(T)/cc-pVTZ
Water nol ecul e r1=${r1} r2=%{r2} angl e=${angl e}
1

1 ${r1}

0
h
0
h 2 ${r2} 1 ${angl e}

ECF

grep the CCSD(T)

2

Example:

15

$./run_h20.sh 1.08 1.08 104.
-0. 76310788178D+02

$./run_h2o0.sh 0.98 1.0 100.
- 0. 76330291742D+02

3. Files containing arguments
We prepare a file rl_file containing the r values:

A
. 80
. 85
. 90
. 95
1. 00

O O O oo

then, a file angle_file containing the angle values:

100.
101.

16

102.
103.
104.
105.
106.

and a file nodefile containing the names of the machines and their number of

CPUs:

2/ [usr/ bin/ssh
2/ [usr/ bin/ssh
16/ / usr/ bi n/ ssh
16/ / usr/ bi n/ ssh
16/ / usr/ bi n/ ssh
6/ / usr/ bi n/ssh
2/ [usr/ bin/ssh
4/ [usr/ bi n/ ssh

17

conput e- 0- 10. | ocal
conput e- 0- 6. | ocal
conput e- 0- 12. | ocal
conput e- 0- 5. | ocal
conput e-0- 7. | ocal
conput e- 0- 1. | ocal
conput e- 0- 13. | ocal
conput e- 0- 8. | ocal

4. Run with GNU parallel
Let's first run the job on 1 CPU:

$tine parallel -arl file -arl file -a angle file \
--keep-order --tag -j 1 $PWD/ run_h2o0. sh

0.75 0.75 100. - 0. 76185942070D+02
0.75 0.75 101. - 0. 76186697072D+02
0.75 0.75 102. - 0. 76187387594D+02
...]

0.80 1.00 106. - 0. 76294078963D+02
0.85 0.75 100. - 0. 76243282762D+02
0.85 0.75 101. - 0. 76243869316D+02
...]

1.00 1.00 105. - 0. 76329165017D+02
1.00 1.00 106. - 0. 76328988177D+02

r eal 15nb. 293s
user 11nP5.679s

18

SYyS 2n20. 194s

Running in parallel on 64 CPUs with the --keep-order option, the output is the
same, but it takes 39x less time!

$tine parallel -arl file -arl file -a angle file \
--keep-order --tag --sshloginfile nodefile $PWY run_h2o0. sh

0.75 0.75 100. - 0. 76185942070D+02
0.75 0.75 101. - 0. 76186697072D+02
0.75 0.75 102. - 0. 76187387594D+02
[...]

0.80 1.00 106. - 0. 76294078963D+02
0.85 0.75 100. - 0. 76243282762D+02
0.85 0.75 101. - 0. 76243869316D+02
[...]

1.00 1.00 105. - 0. 76329165017D+02
1.00 1.00 106. - 0. 76328988177D+02

real 0OnR3. 848s

19

user 0nB. 359s
SYysS OonB. 172s

Links

*O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login: The
USENIX Magazine, February 2011:42-47.

* GNU parallel
* GNU parallel tutorial

20

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/parallel_tutorial.html

Problem 2 : Computation of Pi

We want to compute the value of «with a Monte Carlo algorithm.

« The surface of the circle is 7 => For a unit circle, the surface is
« The function in the red square is y =1—2* (the circle is \/ 2> +y?> =1)
» The surface in grey corresponds to

21

1
/ \/l—gv2 dr=m/4
0

To compute this integral, a Monte Carlo algorithm can be used:

e Points (z,y)are drawn randomly in the unit square.
» Count how many times the points are inside the circle
* The ratio (inside)/(inside+outside) is 7/4.

1

0.8

0.6

0.4

0.2 4

22

Constraints:

« A large number of Monte Carlo steps will be computed (>10')

*\We are allowed to use 100 CPU cores simultaneously

« We stop when the statistical error is below a given threshold (~107°)

Optimal algorithm:;

«Each CPU core computes the its own average X =4N, /N,
number of Monte Carlo steps (107)

conpute pi () {
result :=

for 1=1 to NMAX {
x = randon() ; y = random()
if (X2 + yr2 <= 1) {
result :=result +
}

}
return 4*resul t/ NVAX

23

ot

., over a smaller

24

* All M results obtained on different CPU cores are independent, so they are
Gaussian-distributed random variables (central-limit theorem)

e The Xare sent to a central server

* The central server computes the running average
M

Xi
1

Y — L
WNX—Mi

and the variance
M
X\ 2
o =2 (Xi-X)

to compute the statistical error as dm=o0/v M

* The clients compute blocks as long as the central server asks them to do so
when omis above the target error

Server

Here, the calculations are no more independent: the stopping criterion depends
on the results of all previous runs. We have introduced very simple inter-process
communications.

25

Inter-process communication

Processes vs threads
Process:

* Has its own memory address space
» Context switching between processes is slow
* Processes interact only through system-provided communication mechanisms
 Fork: creates a copy of the current process
* Exec: switches to running another binary executable
» Spawn: Fork and exec on the child
Theads:
 Exist as subsets of a process
» Context switching between threads is fast
» Share the same memory address space : interact via shared memory

26

Communication with named pipes

A named pipe is a virtual file which is read by a process and written by other
processes. It allows processes to communicate using standard I/O operations:

27

Example

File System Program 1

output.gz 7[

28

Process 1: pl.sh

#! [/ bi n/ bash

Create two pipes using the nkfifo conmand
nkfifo /tnp/pipe /tnp/pipe2

Unzip the input file and wite the result
in the 1st pipe

echo "Run gunzi p"

gunzip --to-stdout input.gz > /tnp/pipe

Zip what cones fromthe second pipe
echo "Run gzi p"
gzip < /tnp/pipe2 > output.gz

Clear the pipes in the filesystem
rm/tnp/ pipe /tnp/pipe2

Process 2: p2.sh

29

#! [/ bi n/ bash

Read the 1st pipe, sort the result and wite
in the 2nd pi pe

echo "Run sort"

sort < /tnp/pipe > /tnp/pipe2

Execution:

$./pl.sh &

Run gunzip

$./p2.sh

Run sort

Run gzip

[1] + Done ./ pl.sh

This simple example is equivalent to:

gunzip --to-stdout input.gz | sort | gzip > output.gz

30

But the two programs pl.sh and p2.sh:

 can be started independently : p1 waits for p2 (blocking)
 can be run in different shells
* named pipes allow multiple processes to write in the same pipe

Communication with unnamed pipes

Unnamed pipes are equivalent to pipes, but they are opened/closed in the
programs themselves. They imply a modification of the source files (apart from
using unnamed pipes in the shell with the | operator).

31

Example

32

Parent process
(PID: 5804)

Y

Create pipe

Read

Write

Parent process
(PID: 5804)

fork() =0

fork() = 5805

Child process

Read Read

Parent process

(PID: 5805)

Write Write | (PID: 5804)

Close

read

Child process
(PID: 5805)

Write

Close write

4

Read

Parent process
(PID: 5804)

Write 'Hello' in pipe

Child process
(PID: 5805)

Write Rea

y

Parent process

d (PID: 5804)

Child process
(PID: 5805)

L 4

Parent process
(PID: 5804)

Read from pipe

Hello' received

#!'/usr/ bi n/env python
| nport sys, 0S

def main():
Print process ID (PID) of the current process
print "PID: %" % (os.getpid())

Open the pipe for inter-process conmuni cation
r, w= 0s.pipe()

new pid = os.fork()
I f new pid = 0:
This Iis the parent process
print "I amthe parent, ny PIDis %" % os.getpid())
print "and the PID of ny child is %" % new pi d)
Cose wite and open read file descriptors
0s. cl ose(w)

33

34

r = os.fdopen(r,'r")

Read data fromthe child

print "Reading fromthe child"

S = r.read()

r.close()

print "Read '%' fromthe chil d"%s)

el se:
This 1s the child process
print " | amthe child, ny PIDis %" % os. getpid())
Cose read and open wite file descriptors
0s. cl ose(r)
w = o0s. fdopen(w, ' wW)
print * Sending 'Hello' to the parent”
Send 'Hell o' to the parent
wwite("Hellol")
w. cl ose()
print * Sent 'Hello""

If _name__ =="_ main
mai n()

$./fork. py

Pl D. 5804

| amthe parent, ny PIDis 5804

and the PID of nmy child is 5805
| amthe child, ny PIDis 5805

Reading fromthe child
Sending 'Hell o' to the parent
Sent 'Hell o

Read "'Hello!" fromthe child

35

Computation of «with pipes
Pseudo-code

for 1=1 to NPROC {
pipe(i) := create_pipe()
fork()

I f (Child process) {
cl ose(pipe(i).read)
open (pipe(i).wite)
do {

X = conpute_pi()
wite X into pipe
1 f (failure) {
exit process
}
}
}

cl ose(pipe(i).wite)

36

open (pipe(i).read)

}
data : = []
N : =
do {
for 1=1 to NPROC {
X = pipe(i).read()
data : = dat a+[X]
N = N+
ave : = average(data)
err := error (data)
I f (error < error_threshold) {
print ave and err
exit process
}
}
}

37

Python implementation

#!'/usr/ bi n/env python

NVAX = 10000000 # No of MC steps/process
NVAX inv = 1. e-7

error _threshold = 1.0e-4 # Stopping criterion
NPROC=4 # Use 4 processes

| nport os
fromrandominport random seed
frommath inport sqgrt

def conpute pi():
"""Local Monte Carlo cal cul ation of pi
Initialize random nunber generat or
seed(None)

result = 0.

38

Loop 1077 tines
for 1 1n xrange(NMAX) :
Draw 2 random nunbers x and y
X = randomn()
y = randon()
Check if (x,y) isinthe circle
I X*x + y*y <= 1.:
result += 1
X = estimation of pi
result = 4.* float(result)*NVAX inv
return result

| nport sys
def main():

Readi ng edges of the pipes
r = [None] * NPROC

39

Runni ng processes
pid = [None] * NPROC

for 1 1n range(NPRCC) :
Create the pipe
rfi], w = os.pipe()
Save the Pl Ds
pid[i] = os.fork()
I f pid[i] == 0O:
This is the child process
os.close(r[i])
w = o0s. fdopen(w, ' w)
whi |l e True:
Conpute pi on this process
X = conpute_pi ()
Wite the result in the pipe
try:

41

wwite("%\n"%X))
w. fl ush()
except | Cerror:
Child process exits here
sys. exit(0)
el se:
This 1s the parent process
0s. cl ose(w)

r[i] = os.fdopen(r[i], r")

data = []
whi |l e True:
for 1 1n range(NPRCC) :
Read in the pipe of the correspondi ng process
X = float(r[i].readline())
dat a. append(fl oat(X))
N = | en(dat a)

42

Conput e aver age
average = sun(data)/N

Conpute vari ance
If N> 2:

| = [(x-average)*(x-average) for x in data]

variance = sun(l)/ (N 1.)
el se:
vari ance = 0.

Conpute error
error = sqrt(variance)/sqgrt(N)

print "% +/- %' % average, error)

St opping condition
If N> 2 and error < error_threshol d:

Kill children

for 1 1n range(NPROC) :
try: os.kill(pid[i], 9)
except: pass

sys. exit(0)

If _name__ =="'_main
mai n()

$./pi _fork. py

3.142317 +/- 0.000000
3.141778 +/- 0.000000
3.141344 +/- 0.000534
3.141377 +/- 0.000379
3.141422 +/- 0.000297
3.141443 +/- 0.000243
3.141485 +/- 0.000210

43

44

Wwwwww

]

. 141513
. 141513
. 141514
. 141512
. 141513

141515

cNeNeNcNoNa

. 000041
. 000041
. 000040
. 000040
. 000040

000040

Pi

Convergence of the Monte Carlo average
3.1417 — I I

3.14165 |- o -

3.1416 - + TH%F Tk Tl e il I WW i

3.141 E“w l ' H ﬂb : _L |
. 55 7%— qﬁ T i _ _::%:"‘::::'::f L fi2ie
31415 11 IR LR]

3.14145 1| | -

L

3.1414 1 | L -

3.14135 [fi L n

3.1413 ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180

Number of blocks

Sockets

Sockets are analogous to pipes, but they allow both ends of the pipe to be on
different machines connected by a network interface. An Internet socket is
characterized by a unique combination of :

* A transport protocol: TCP, UDP, raw IP, ...

* A local socket address: Local IP address and port number, for example
192.168.2.2:22

* A remote socket address: Optional (TCP)

46

MyServer
Port 11279

Machine 1

HTTP
Port 80

Network interface
192.168.2.2

Machine 2

MyClient
Port 12164

Network interface
192.168.2.3

Pseudo-code

47

Server code:

HOSTNAME : = "server.tccmfr”
PORT : =
socket : = create | NET socket ()

bi nd(socket, (HOSTNAME, PORT))

| i sten(socket)

(client _socket, address) := accept(socket)
data = recv(client _socket)

send(client _socket, " Thank you")

cl ose(client _socket)

Client code:

HOSTNAME : = "server.tccmfr”

PORT : =

socket : = create | NET socket ()
connect (socket, (HOSTNAME, PORT))
nessage = "Hello, world !!trrr

48

send(socket, nessage)
reply = recv(socket)

Python implementation
Server code:

#!'/usr/ bi n/env python

| nport
| nport
| nport

For printing the tine

now = datetine. dateti ne. now

def main():
Get host nane

49

HOSTNAIVE
PORT

socket . get host nane()
11279

print now(), "I amthe server : %: %" % HOSTNANE, PORT)

Create an | NET socket
s = socket.socket (socket. AF | NET, socket. SOCK STREAM

Bind the socket to the address and port
s. bi nd((HOSTNAME, PORT))

Wait for 1 ncomng connections
s.listen(5)

Accept connection
conn, addr = s.accept()
print now), "Connected by", addr

Buffered read of the socket
print now(), "Reading from socket"
data = ""

whi |l e True:

nmessage = conn. recv(38)

print nowm(), "Buffer : "+message

data += nessage

| f message == "" or |len(nessage) < 8: break
print now(), "Received data : ", data

print now(), "Sending thank you..."
conn. send(" Thank you")

print now(), "C osing socket"
conn. cl ose()

If _name__ =="_main
mai n()

Client code:

51

#! [usr/ bi n/ env python

| nport sys, 0sS
| nport socket
| nport datetine

now = datetine.datetinme. now
def main():
Get host nane
HOSTNAME = sys. argv][1]
PORT = int(sys.argv[?2])
print now(), "The target server is : U: %" % HOSTNAVE, PORT)

Create an | NET socket
s = socket.socket (socket. AF | NET, socket. SOCK STREAM

Connect the socket to the address and port of the server

52

s. connect ((HOSTNAME, PORT))

Send the data

nessage = "Hello, world !!trrr
print now(), "Sending : "+nmessage
s. send(nessage)

Read the reply of the server
data = s.recv(1024)

s. cl ose()
print now(), 'Received: ', data
if _name_ =="_ main__":
mai n()

Server execution;

$./sock_server. py
2014-09-04 01:13:49.903443 | amthe server : | pqdh82: 11279

53

2014-09- 04
2014-09- 04
2014-09- 04
2014-09- 04
2014-09- 04
2014-09- 04
2014-09- 04
2014-09- 04

01:
01:
01:
01:
01:
01:
01:
01:

13:
13:
13:
13:
13:
13:
13:
13:

53.
53.
53.
53.
53.
53.
53.
53.

387956
388007
388029
388046
388060
388071
388081
388157

Client execution:;

$./sock client.py |pqdh82
2014-09-04 01:13:53.387347
2014-09-04 01:13:53.387880
2014-09-04 01:13:53.388277

54

Connected by ('127.0.0.1", 44373)
Readi ng from socket

Buf f er Hel | o, w

Buf f er orld !!!

Buf f er I

Received data : Hello, world !'!I111]

Sendi ng t hank you. ..
Cl osi ng socket

11279

The target server is : |pqdh82:11279
Sending : Hello, world !ttt1l
Recei ved: Thank you

Computation of «with sockets
Server:

#!'/usr/ bi n/env python

HOSTNAME = "| ocal host "
PORT = 1666

error _threshold = 4. e-5 # Stopping criterion

| nport :
| nport
from | nport sqrt

def main():
data = []

Create an | NET socket
S = socket. socket (socket. AF_| NET,

55

socket . SOCK _STREAM

56

Bind the socket to the address and port

s. bi nd((HOSTNAME, PORT))

whi |l e True:
Wait for 1 ncomng connections
s.listen(5)

Accept connection
conn, addr = s.accept()

Buffered read of the socket
X =""
whi l e True:

message = conn.recv(128)

X += nessage

| f message == "" or |en(nessage)

< 128: break

dat a. append(fl oat (X))
N = | en(dat a)

Conput e aver age
average = sun(data)/N

Conpute vari ance

If N > 2:
| = [(x-average)*(x-average) for x in data]
variance = sun(l)/ (N 1.)

el se:
vari ance = 0.

Conpute error
error = sqrt(variance)/sqrt(N)

print "% +/- 9% "' % average, error)

Stopping condition

If N> 2 and error < error_threshol d:
conn. send(" STOP")
br eak

el se:
conn. send(" CK")

conn. cl ose()

If __nanme__ == " main
mai n()

Client:

#! [usr/ bi n/env python

NVAX = 10000000 # No of MC steps/process
NVAX inv = 1.e-7
HOSTNAME = "I ocal host™

58

PORT = 1666

fromrandominport random seed
| nport socket

| nport sys

def conpute pi():

59

"""Local Monte Carlo calculation of pi"""

Initialize random nunber gener at or
seed(None)

result = 0.
Loop 1077 tines
for 1 1n xrange(NMAX) :
Draw 2 random nunbers x and y
X = random()
y = randon()
Check if (x,y) isinthe circle

I f xX*x + y*y <= 1.:
result += 1
X = estimation of pi
result = 4.* float(result)*NVAX inv
return result

def main():

whil e True:
X = conmpute _pi()

Create an | NET socket
S = socket. socket (socket. AF | NET, socket.SOCK STREAM

Connect the socket to the address and port of the server

try:
s. connect ((HOSTNAME, PORT))
except socket.error:

60

| f

61

br eak

Send the data
nmessage = str (X
s. send(nessage)

Read the reply of the server
reply = s.recv(128)

s. cl ose()
I f reply == "STOP":
br eak
__hane_ =="'__main__
mai n()

Remote procedure call (RPC)

RPC enables software written in different languages and running on different
computers to work with each other seamlessly.

One program running in a process (the client) calls a function belonging to
another program running in another process (the server).

Client Program

parameters result

N

erver Program

All the inter-process communication is hidden.

62

1.The client calls the stub : the parameters are converted to a standard
representation (de-referencing pointers, big/little endian, etc)

2.The client stub marshals the parameters : they are packed together in a
message.

3. The message is sent to the server

4. The server transmits the message to the server stub

5. The server stub unmarshals the message

6. The server calls its subroutine with the parameters

7. The output is sent back to the client using the same mechanism

Server

output data
. Program
@ input data

Client

mout dat XML message
Opit Cdld Stub XML message
_input data |

63

Some RPC implementations:
 XML-RPC: XML is the encoding format and HTTP is the transport protocol

*« JSON-RPC: JSON is the encoding format and HTTP is the transport protocol

* SOAP: Simple Object Access Protocol. Uses XML for encoding, but can use
HTTP, HTTPS, SMTP, UDP, ... transport protocols

« CORBA: Common Object Request Broker Architecture
. etc...

64

XML-RPC simple example
Pseudo-code
Server code

function_1(x1) { ... }
function 2(yl1,y2) { ... }

server := create XM._ RPC server((HOSTNAME, PORT))
server.register (function_1, function_ 2)
server.start ()

Client code

server : = connect XM. RPC server((HOSTNAME, PORT))

result 1 := server.function_ 1(x1)
result 2 := server.function_2(yl,y2)

Python implementation

65

Server code

#! [usr/ bi n/env python

i nport Si npl eXM_RPCSer ver
| nport socket

cl ass MyServer (object):

def host nanme(sel f):
"""Returns the name of the host on which the server

return socket. get host nane()

def split(self, string):
"""Splits a string in a list of words
return string.split()

66

runs

def main():
Display the nane of the server in the standard out put
host = socket. get host bynane(socket. get host nane())
port = 8000
print "Server URL is http://%: %" % host, port)

Create an instance of the server
server = Si npl eXM_RPCSer ver . Si npl eXM_.RPCSer ver ((host,

Associate all functions of MyServer with the server
server.regi ster _instance(M/Server())

Start the server
server.serve_forever()

Client code

67

port))

#! [usr/ bi n/env python

from socket inport gethostnane

| mport sys

i nport xmrpclib # XML-RPC | i brary

def main():
host = get host nane()
print 'This host is:

%' 9% host)

The URL of the server is the 1st argunent of the command |i ne

url = sys.argv[1]

Create a proxy object for the server
server = xmrpclib. Server(url)

Run the 'host nane'

function on the server and print the out put

renote = server. hostnane()

68

print 'Renote host is: %' %renote)

Run the 'split' function on the server and print the out put
S ="This is the string to split”

splitted = server.split(s)

print '"Splitted string has type:', type(splitted)

print str(splitted)

If _name_ =="_main
mai n()

Execution

scemama@ pqdh82 $./ xm rpc_server. py
Server URL is http://192.168. 2. 8: 8000
| pqdh82 - - [29/Jul /2014 01:08:06] "POST /RPC2 HTTP/1.1" 200 -
| pqdh82 - - [29/Jul /2014 01:08:06] "POST /RPC2 HTTP/1.1" 200 -

69

scemana@i
Thi s host

$./xmrpc_client.py http://192. 168. 2. 8: 8000
|s: pi

Renot e host is: | pqdh82
Splitted string has type: <type 'list'>

[' This',

70

‘is', '"the', 'string', 'to', 'split']

Monte Carlo Calculation of «with XML-RPC

Pseudo-code
Server code:

data = []
server _is running := Fal se

subroutine set result(X) {
data : = data + [X]
I f (get _error() <= error_threshold) {
server _is_running := Fal se
}
}

function get average() {
return sunm(data) / (length(data))

}

71

function get variance() {

average : = get average()
V =
for all x in data {
v .= variance + (x-average)”
}

return v/ (l ength(data)-1)
}

function get _error() {
return sqrt(get variance() / (length(data)))

}

server : = create XM. _RPC server((HOSTNAME, PORT))
server.register (set _result)

server.start ()

server _is running := True

whil e (server _is_running) {

72

server. handl e_request ()

}

print get average(), get _error()
Client code:

function conpute pi() {

}
server := connect XM. RPC server((HOSTNAME, PORT))

| oop : = True

while (1oop) {
X = conpute_pi()
reply := server.set _result(X
loop := (reply = "CONTI NUE")

73

Python implementation
Server code:

#! [usr/ bi n/ python -u

from Si npl eXM_RPCSer ver inmport SinpleXM_RPCServer
frommath inmport sqgrt
fromtine inport gntinme, strftine

Term nation condition
error _threshold = 1. e-4

cl ass Pi Server (object):

def init_ (self):
"""Initialization of the server
Data 1s stored 1n a list
self.data = []

74

75

def

Ni1s the nunber of random events
sel f.N =0

set result(self,val ue, address):
"""Adds a value comng froma given host"""
sel f. dat a. append(val ue)
self.N += 1
Term nation condition is cal cul ated now
If self.N> 4 and self.error() < error_threshol d:
self.term nate()
result = 0
el se:
result =1
Each tine a new event is added, display the
current average and error
sel f.print_status(address)
return result

/6

def

def

def

def

term nate(sel f):
"""Term nate the run"""
gl obal runni ng

runni ng = Fal se

aver age(sel f):
""" Conputes the running average"""
return sun(self.data)/self.N

vari ance(sel f):
""" Conputes the variance"""
X_ave = self.average()
| = [(x-x_ave)*(x-x_ave) for x in self.data]
| f self.N < 2:
return O.
return sun(l)/(self.N1)

error(self):

"""Conputes the error bar"""
return sqrt(self.variance())/sqrt(self.N)

def print_status(self, address):
"""Dsplays sonething |ike:
[15:39:59 127.0.0.1] : 3.141336 +/- 0.000120 (7)

time = strftinme(" % %vt %5', gntine())
print "[WBs %5s | : % +/- 9% (%d)"%tine, address,
sel f.average(), self.error(),self.N)

running = True

fromsocket inport gethostbynane, gethostnane
| nport sys

77

def main():
Print the URL and port nunber

of the server

host = get host bynane(get hostnane())

port = 8000

print >>sys.stderr, "Server URL is http://%: %" % host, port)

Create the server

server = Sinpl eXM_.RPCServer((host, port), |ogRequests=Fal se)

All functions of Pi Server are accessible via XM.-RPC
server.regi ster_instance(Pi Server())

Run while the global variable 'running' is True

whi I e runni ng:
server. handl e_request ()

Client code:

/8

#! [usr/ bi n/fenv python

Conpute X as an average over 1077 MC steps
NMAX = 10000000
NVAX inv = 1. e-7

fromrandominport random seed

def conpute pi():
"""Local Monte Carlo calculation of pi"""
Initialize random nunber generat or
seed(None)

result = 0.

Loop 1077 tinmes

for 1 1n xrange(NMVAX) :
Draw 2 random nunbers x and y
X = random()

79

y = randon()
Check If (x,y) isin the circle
I f x*x + y*y <= 1.:
result += 1
X = estimation of pi
result = 4.* float(result)*NVAX inv
return result

| nport sys
| nmport xmrpclib
from socket inport gethostbynanme, gethostnane

def main():
The URL of the server is the 1st command | i ne argunent
url = sys.argv[1]
address = get host bynanme(get host nane())
Proxy for the XM.- RPC server

80

server = xmrpclib.Server(url)
| oop = True
whi | e | oop:
CGet a new estimate of pl
pi = conpute pi()
If it 1s not possible to set the result on the
server, the server Is down so stop the cal cul ation

try:
cont = server.set _result(pi, address)
| oop = (cont == 1)
except :
| oop = Fal se
1f _name__ =="'"_ main__':
mai n()

Example fo execution using a single client:

81

$tine
Ser ver

L T e T e Y e B e e T e T e |

15:
15:
15:
15:
15:
15:
15:
15:

43:
43:
43:
43:
43:
43:
43:
43:

./ pi _server. py

URL is http://130.
26 130. 120. 229.
29 130. 120. 229.
33 130. 120. 229.
37 130. 120. 229.
40 130. 120. 229.
44 130. 120. 229.
48 130. 120. 229.
51 130. 120. 229.

Average is 3.5 seconds/block

120. 229 82: 8000

82
82
82
82
82
82
82
82

e e — — — — —]

WwWwwwwwwow

. 141130
. 141475
. 141237
. 141429
. 141494
. 141573
. 141626
. 141663

Example fo execution using a multiple clients:

$tine
Server
[15:39:56
[15:39:56
[15:39:57

82

. pi

_server.

Py

URL is http://130.120.229. 82: 8000
127.0.0.1
127.0.0.1
127.0.0.1

]
]
]

3.
3.
3.

141700
141630
141590

OO OO0 O0O0O0o0Oo

. 000000
. 000345
. 000310
. 000292
. 000235
. 000207
. 000183
. 000163

. 000000
. 000070
. 000057

AN AN AN AN AN AN AN

~—~

1)
2)
3)
4)
5)
6)
7)
8)

1)
2)
3)

[

e I e I e I e e e A e T e T e T e Y e e A e B e |

15: 39:
15: 39:
15: 39:
15: 39:
15: 40:

]

15: 40:
15: 40:
15: 40:
15: 40:
15: 40:
15: 41.:
15: 41.:
15: 41.:
15: 41.:

r eal
user
SYysS

58
58 130.
58 130.
59
00
58 130.
58 130.
59
59 130.
59
00
00 130.
00 130.
00
1nD. 958s
OnD. 168s
OnD. 028s

127.0.0.1
120. 229. 23
120. 229. 23
127.0.0.1
127.0.0.1

120. 229. 82
120. 229. 82
127.0.0.1
120. 229. 23
127.0.0.1
127.0.0.1
120. 229. 29
120. 229. 27
127.0.0.1

Average is 0.37 seconds/block

83

141404

. 141325
. 141306
. 141336
. 141444

. 141526
. 141522
. 141524
. 141524

141523

. 141521
. 141518

141520

. 141517

cNeNoNoNe

cNeNeNcNoNoNoNoNa!

000191

. 000167
. 000138
. 000120
. 000150

. 000041
. 000041
. 000041
. 000041

000041

. 000040
. 000040

000040

. 000040

N AN AN AN A

AN AN AN AN AN AN AN AN

4)
5)
6)
7)
8)

177)
178)
179)
180)
181)
182)
183)
184)
185)

Problem 3 : Numerical computation of a
2-electron integral

We want to compute numerically the value of the following integral:

<¢1 Dy |5 ¢4> :/ﬁl (1) (12)%12% (71)@4 (o)dry dry

Constraints:

*\We need to use Fortran
« A large number of points will be computed (~10'%)
Simple solution:
« Compute the sum over a fixed number of grid points per CPU
* Use the Message Passing Interface (MPI) to communicate

84

Simple partition:
A

85

Better load balancing:
A

86

Message Passing Interface

MPI is a standard Application Programming Interface (API) which specifies how
processes can communicate together.

* Each process has a rank and belongs to a group of processes.

* Processes can do point-to-point or collective communications
There is no need to pass the IP address and port number. All low-level
communication is handled.

MPI programs start with a call to the MPI_Init function

I Fortran
| nteger :: ierr
call MPI Init(ierr)

Il C

#1 ncl ude <npi . h>
int MPl _Init(int *argc, char ***argv)

87

[C++

#i ncl ude <npi . h>

void MPl::Init(int& argc, char**& argv)
void MPIL::Init()

MPI programs end with a call to the MPI_Finalize function

| nteger :: ierr
call MPI _Finalize(ierr)

The rank of the current process is obtained with
cal | MPI _COVM RANK(MPI COVM WORLD, nyid, ierr)
and the total number of processes is obtained with

call MPI _COW SI ZE(MPI _COVMM WORLD, nproc, ierr)

88

Synchronization
call MPlI _BARRI ER(MPI _COWM WORLD, i err)

All the processes are blocked until they are all at this point. They wait for each
other.

Point-to-point send/receive operation

I nclude " npif.h

<type> o BUR(*)

Integer :: n, datatype, tag, comm ierr
I nteger :: status(MPl _STATUS Sl ZE)

I nteger :: sender, receiver

I f (nmy_id == sender) then

call MPI _SEND(buffer, n, datatype, receiver, tag, conm ierr)
else if (ny_id == receiver) then

call MPI _RECV(buffer, n, datatype, sender, tag, comm status, ierr)
endi f

89

» sender : Rank of the process sending the data
 receiver : Rank of the process receiving the data

» <type> : Type of data (double precision, integer, etc)
o buffer : array of type <type>

*n : number of elements to send

e datatype : MPI type of data (MPI_DOUBLE PRECISION, MPI_INTEGERA4,
etc)

stag : Message tag. Used to identify the message.
e comm : Communicator. Usually MPI_COMM_WORLD
sierr : if ierr == MP1_SUCCESS, everything went fine

estatus : Contains some information about the incoming message to track
failures

Collective communications
Broadcast : one-to-all communication. Send the same data to all processes.

90

| nclude "nmpif. h’

<type> :: buffer(*)

| nteger :: n, datatype, sender, comm ierr

call MPI _BCAST(buffer, n, datatype, sender, comm ierr)

* buffer : Data to send to all processes

*n : Number of elements in buffer
Reductions: all-to-one communication.

i nclude " npif.h

<type> :: sendbuf(*), recvbuf(*)

I nteger :: n, datatype, op, sender, conm ierr

cal | MPI _REDUCE(sendbuf, recvbuf, n, datatype, op, sender, comm ierr)

» sendbuf : Buffer of data to send
e recvbuf : Buffer in which the data will be received

*0p : Reduction operation to perform. Examples: MPI_SUM, MPI_MAX,
MPI|_PROD, etc

91

The all-to-all variant is MPI_ALLREDUCE.
MPI has lots of routines, have a look a the documentation.

92

Two-electron integral using MPI
Pseudo-code

function f(rl1,r2) {

}

MPI Init()
nyid : = MPI _COVW RANK(MPI _COVMM WORLD)
nproc := MPI _COW SI ZE(MPI _COVM WORLD)

dx = (xmax-xm n)/ (nmax- 1)
dv : = dx"6
| ocal _result := 0.

/| For 4 processors,
[/ Processor O runs over 1,5,9 ,13,...
[/l Processor 1 runs over 2,6,10, 14, ...

93

/[l Processor 2 runs over 3,7,11,15,...
/] Processor 3 runs over 4,8,612, 16, ...

for 1 = nyid+l to nmax with a step of nproc {
for j,k,I,mn =1 to nmax {
ri(1) := (i-1) * dx + xmn
ri(2) :=(j-1) * dx + xmn
ri(3) := (k-1) * dx + xmn
r2(1) = (I-1) * dx + xmn + dx/2
r2(2) := (m1l) * dx + xmn + dx/?2
r2(3) :=(n-1) * dx + xmn + dx/?2
[l (+ dx/2 : Avoids divergence in 1/r12)

| ocal result :=local result + f(rl1,r2) * dv

}
}

result := MPI _REDUCE(Il ocal result, MPI _SUM MPI _COWM WORLD)

94

1t (myid = 0) {
print result
}

MPlI _Finalize()
Fortran implementation

doubl e precision function f(rl,r2)
I nplicit none
doubl e precision, intent(in) :: r1(3), r2(3)

| < Phi 1 (r1) Phi_2 (rl) 1/r12 Phi_3 (r2)

Phi 4 (r2) >

doubl e precision :: Phi_1, Phi_2, Phi_3, Phi_4

doubl e precision :: rl2 inv
doubl e precision, paraneter :: al pha_1=1.d0 ,
doubl e precision, paraneter :: al pha_2=4.2d0,

95

al pha_3=1. 5d0
al pha_4=2. 3d0

96

doubl e preci sion
doubl e preci sion
doubl e preci sion
doubl e preci sion

Phi 1 = exp (-al

Phi 2 = exp (-al

Phi 3 = exp (-al

, paraneter ::
, paranmeter ::
, paranmeter ::
, paranmeter ::

pha_ 1*((r1(1)-
(ri(2)-
(ri(3)-

pha_ 2*((r2(1)-
(r2(2)-
(r2(3)-

pha 3*((r1(1)-
(ri(2)-
(ri(3)-

X 1(3)=(/
X 2(3)=(/
X 3(3)=(/
X 4(3)=(/

Phi 4 = exp (-alpha 4*((r2(1)-
(r2(2)-
(r2(3)-

ri2 inv = 1.d0/dsqgrt ((r1(1)-

(ri(2)
f =Phi 1 * Phi 2 * rl2 inv *
end
program bi el ec

I nplicit none
| nclude "npif.n'

| nteger :: ierr
| nteger :: nyid

97

) +
-r2(2))*(r1(2)-r2(2)) +
(ri(3)-))

4(1))*(r2(1)-X_4(1))
4(2))*(r2(2)-X_4(2))
4(3)) " (r2(3)-x_4(3))

&
&

I>< I>< I><
+ o+

))

r2(1))*(ri(1)-r2(1) &
&
r2(3))*(r1(3)-r2(3)

Phi 3 * Phi_4

98

| Nt eger :: nproc

Integer :: 1,],k,I,mn

| nt eger, paraneter ::. nmax=30

doubl e precision, paranmeter :: xmn = -2.d0, xmax = 2.d0
doubl e precision, external :: f

doubl e precision :: r1(3), r2(3)

doubl e precision :: local result, result

doubl e precision :: dx,dv

l Initialize the MPl |ibrary
call MPI Init(ierr)

l Get the rank of the current process
cal | MPI _COVM RANK(MPI COVMM WORLD, nyid, ierr)

| Get the the total nunber of processes

99

call MPI _COW SI ZE(MPI _COVM WORLD, nproc,

I Conpute a partial result locally
| ocal result = 0.dO

dx = (xmax-xm n)/ dbl e(nmax- 1)

dv = dx**6

For 4 processes,

|
' Proces O runs over 1,5,9 , 13,
l Proces 1 runs over 2,6, 10, 14,
l Proces 2 runs over 3,7, 11, 15,
l Proces 3 runs over 4,8, 12, 16,

do i =nyi d+1, nnmax, nproc
ri(1l) = dble(i-1) * dx + xmn
do j =1, nmax
ri(2) = dble(j-1) * dx + xmn
do k=1, nmax
rl(3) = dble(k-1) * dx + xmn

lerr)

do | =1, nmax
r2(1) = dble(l-1) * dx + xmn + dx/2
l + dx/2 : Avoids divergence in rl=r2
do nmEl, nmax
r2(2) = dble(m1) * dx + xmn + dx/2
do n=1, nnmax
r2(3) = dble(n-1) * dx + xmn + dx/2
| ocal result = local result + f(rl1,r2) * dv
enddo
enddo
enddo
enddo
enddo
enddo

l Sumthe local results of all processes
l into the nmaster process

call MPI _REDUCE(l ocal result, result, 1, &

100

MPI DOUBLE PRECI SION, MPI _SUM &
0, MPI _COW WORLD, ierr)

1 f (nmyid == 0) then
print *, result

endi f

I Termnate the MPI |ibrary
call MPI_Finalize(ierr)

end

Links

* Open MPI : Open source MPI implementation : http://www.open-mpi.org/
* Open MPI documentation : http://www.open-mpi.org/doc/v1.8/

101

http://www.open-mpi.org/
http://www.open-mpi.org/doc/v1.8/

Coarray Fortran (CAF)

Extension of the Fortran 2008 standard.

* Each running process is called an image.
» The number of images is obtained with the built-in num_image() function

* The rank of the current process is obtained with this_image()
A codimension can be given to arrays in square brackets, for example:

| Nt eger o0 [*]
doubl e precision :: A(10)[*]
For any image,
*i[2] : value of i in image number 2
* A(5)[4] : value of A(5) in image number 4
Any image can directly have access an element in the memory of another image.
PGAS : Partitioned Global Address Space.

102

Process 1 Process 2 Process 3

Instructions

Memory Memory Memory

Much simpler than MPI.

* Higher level of abstraction than MPI
* Types, message sizes, tags, etc are known by the compiler

« Compiler can place the communication instructions where it is the best
(asynchronous comm)

* Better performance obtained by non-experts
But:

* Experts can get more performance with MPI : more flexibility (lower level)
* Having knowledge of how MPI works helps to write efficient (CAF) code

103

Calculation of the 2-electron integral

doubl e precision function f(rl,r2)
i nmplicit none
doubl e precision, intent(in) :: r1(3), r2(3)

\/

| < Phi 1 (rl) Phi_2 (r1l) 1/r12 Phi_3 (r2) Phi_4 (r2)

doubl e precision :: Phi_1, Phi_2, Phi_3, Phi_4
doubl e precision :: rl2 inv

doubl e precision, paraneter :: alpha_1=1.d0 , al pha_3=1.5d0
doubl e precision, paraneter :: al pha_2=4.2d0, al pha_4=2. 3d0

doubl e preci si on, par anet er X 1(3)=(/ 0.d0, 0.d0O, 0.dO0 /)
doubl e precision, paraneter :: X 2(3)=(/ 0.d0, 1.dO0, 0.dO0 /)
doubl e precision, paraneter :: X 3(3)=(/ 0.d0, 1.d0, 1.dO0 /)
doubl e precision, paraneter :: X 4(3)=(/ 1.d0, 1.dO0, 0.dO0 /)

104

Phi 1 =

Phi 2 =

Phi 3 =

Phi_4 =

rl2 inv

105

exp (-alpha 1*((r1(1)-
(ri(2)-
(r1(3)-

exp (-alpha 2*((r2(1)-
(r2(2)-
(r2(3)-

exp (-alpha 3*((r1(1)-

(r1(2)-
(r1(3)-

exp (-alpha 4*((r2(1)-
(r2(2)-
(r2(3)-

= 1.d0/dsqrt ((r1(1)

I><I><I><
i el
—~ —~
(CORN ORI
— — —
~— — —
* * *
—~ —~
-
=
—~
N
~
I><I><I><
i el
—~ —~
(CORN O RN
— — —
~— — —
+ o+
Ro Ro

I><I><I><
NN DN
—~ A~
WN -
~— — —
~— —
* * ok
—~ A~
-
N
—~
N
~
I><I><I><
NN DN
—~ A~
W N -
~— — —
~— — —
+ o+

I><I><I><
W W w
—~ A~
W N -
~— — —
~— — —
* * X
—~ A~
-
=
—~
N
~
I><I><I><
W W w
—~ A~
WnN -
~— — —
~— — —
+ o+

I><I><I><
e
—~ A~ —~
(CORN O RN
~— — —
~— — —
* * *
—~~ ~
N
—~
N
~
I><I><I><
el
—~ A~
(CORN ORI
~— — —
~— — —
+ o+
Ro Ro

-r2(1))*(r1(1)-r2(1)) + &

o Ro

o Ro

(r1(2)-r2(2))*(r1(2)-r2(2)) + &
(r1(3)-r2(3))*(r1(3)-r2(3)))

f =Phi_1* Phi 2 * rl12 inv * Phi_3 * Phi_4
end

program bi el ec

I nplicit none

integer :: i,j,k,l,mn

| nt eger, paraneter :: nmax=30

doubl e precision, parameter :: xmn = -2.d0, xmax = 2.d0
doubl e precision, external :: f

doubl e precision :: r1(3), r2(3)

doubl e precision :: local _result[*], result

doubl e precision :: dx,dv

106

107

I Conpute a partial result locally
| ocal result = 0.dO

dx = (xmax-xm n)/dbl e(nmax- 1)

dv = dx**6

l Image O runs over 1,5,9 ,13,...
l I mage 1 runs over 2,6, 10, 14, ...
l I mage 2 runs over 3,7,11,15,...
l I mage 3 runs over 4,8,12, 16,
do i =this_imge() +1, nmax, nun1|nages()
rl(1l) = dble(i-1) * dx + xmn
do jzl,nnax
rl(2) = dble(j-1) * dx + xmn
do k=1, nmax
ri(3) = dble(k-1) * dx + xmn
do | =1, nmax
r2(1) = dble(l-1) * dx + xmn + dx/2

l + dx/2 : Avoids divergence in rl=r2
do nmEl, nmax
r2(2) = dble(m1) * dx + xmn + dx/2
do n=1, nnax
r2(3) = dble(n-1) * dx + xmn + dx/2
| ocal result = local result + f(rl1,r2) * dv
enddo
enddo
enddo
enddo
enddo
enddo

l Sumthe |local results of all processes
do i =1, num.i mages()

result =result + local _result[i]
enddo

108

I f (this_image() == 1) then
print *, result
endi f

end

Links

» Coarray Fortran http://www.co-array.org/
* Rice University http://caf.rice.edu/
» Coarray with gfortran http://gcc.gnu.org/wiki/Coarray

109

http://www.co-array.org/
http://caf.rice.edu/
http://gcc.gnu.org/wiki/Coarray

Problem 4: Parallelization of a matrix
product

Matrix products are usually not written by the user. It is preferable to use
optimized libraries to perform linear algebra. A standardized API exists (Lapack)
on top of the BLAS API. Every CPU manufacturer provides optimized libraries
(MKL, ATLAS, NAG, ACML, CULA, etc).

For matrix products, we use DGEMM:
* D : double precision
*Ge : General
MM : Matrix Multiplication

NANME
DGEMM - performone of the matrix-matrix operations

C := al pha*op(A)*op(B) + beta*C

110

SYNCPSI S
SUBROUTI NE DGEMM (TRANSA, TRANSB, M N, K, ALPHA, A, LDA
B, LDB, BETA, C, LDC)

CHARACTER* 1 TRANSA, TRANSB

| NTEGER M N, K LDA LDB, LDC

DOUBLE PRECI SI ON ALPHA, BETA

DOUBLE PRECI SION A(LDA, *), B(LDB, *), C(LDC *)

N
Cij :];AikBkj

C =
do j=1, N
do i =1, N
do k=1, N
Ci,)) =di,)) + A, k) * B(k,])
end do

111

end do
end do

Ali,:) B(:.)) C(i.j)
The final matrix can be split, such that each CPU core builds part of it.

112

113

Gy =4y, By + 4, By

Ciy=Ay1-Biy+ A5 -By

Cy=Ay, By + Ay By

Cog=Ay1 -Big+Agy By
The large N x N matrix product can be performed by doing 8 smaller matrix
products of size N/2 x N/2, that can be done simultaneously by 8 CPUs.

114

Data access is slow with respect to calculation:

Operation Latency (ns)
Int ADD 0.3
FP ADD 0.9
FP MUL 1.5
L1 cache 1.2
L2 cache 3.5
L3 cache 13
RAM 79
Infiniband 1 200
Ethernet 50 000
Disk (SSD) 50 000
Disk (15k) 2 000 000

Arithmetic intensity : Flops/memory access

115

Sequential algorithm:

» The most efficient operation on a computer : ~95% of the peak performance

« O(N?)data access and O(N?)flops -> High arithmetic intensity -> Compute
bound.

* (2 x N?) data reads, (N) data writes and (N?3) flops
 Arithmetic intensity = N/2
4-way parallel algorithm:
* Here, the data can not be disjoint between the CPUs
 To build one block, 4 blocks are needed
» The same block will be read by different CPUs
* (2 x N x N/2) data reads, (N/2 x N/2 x N) flops
 Arithmetic intensity = N/4 : less than sequential algorithm
Difficulty:
* A modern CPU can perform 8 FP ADD and 8 FP MUL per cycle (!!)
* A random memory access takes ~300 cycles (4 800 flops!)

116

* A network access takes ~4000 cycles (64 000 flops!)

* To benefit from distributed parallelism, the matrices have to be very large
Proposed solution: Use shared-memory parallelism

» Avoids network bottleneck (~10x slower than RAM)

L3 cache sharing optimizes data access (~6x faster than RAM)

* Hardware memory prefetchers will mask the RAM latencies

Process

Memory

VAR B

S
©

117

Threads
pthreads

* When starting a new thread, a concurrent execution of a function is started in
the same memory domain.

* A private memory domain is created for the thread

* The parent process can wait until all the children threads have finished their
work

* Fork/join model
Example in pseudo-code

function () { ... }

t = pthread create(f);

Example in Python

118

#!'/usr/ bi n/env python

| nport threading
| nport tine

A=20

def f(x):
gl obal A
tinme.sleep(l.)
A =X
print x, "witten by thread"

def main():
t = threadi ng. Thread(target=f, args = [2])
print "Before thread starts, A= ", A
t.start()
time. sl eep(0.5)

119

print "A=", A
tinme.sleep(l.)
print "A=", A
tinme.sleep(l.)
t.join()

print "After join, A=", A

If _name__ =="'_main
mai n()

What happens when 2 threads read from the same memory address at the
same time?

Nothing special
What happens when 2 threads write at the same memory address at the
same time?

If you are lucky, the program crashes. Otherwise, it is unpredictible.

120

Locks
To avoid writing simultaneously at the same memory location, we introduce
Locks:
acquire_lock(L)
if L is free, the current thread gets the lock. Otherwise, block until the lock can
be acquired

release lock(L)
the lock is released by the current thread

Example of wrong code

#!'/usr/ bi n/env python
| nport
| nport

A =

def f(x):

121

gl obal A
for 1 1n range(x):
A = A+l

def main():
t = [None for I 1n range(10)]
for 1 in range(10):
t[i] = threading. Thread(target=f, args = [100000])
for 1 1n range(10):
t[i].start()

for 1 1n range(10):
tfi].)oin()
print A
If _name_ =="'_ main__
mai n()
Using a lock:

122

#!'/usr/ bi n/env python
| nport threading
| nport tine

A=20
| ock = threadi ng. Lock()

def f(x):
gl obal A
a =0
for 1 1n range(x):
a = atl
| ock. acquire()
A = Ata
| ock. rel ease()

def main():
t = [None for I i1n range(10)]

123

for i in range(10):

t[i] = threading. Thread(target=f, args = [1)
for I 1n range(10):

t[i].start()

for I 1n range(10):
t[i].]oin()
print A
If _name__ =="'_main__':
mai n()

A semaphore is more general than a lock : it can be taken simultaneously by
more than 1 thread.

124

OpenMP

OpenMP is an extension of programming languages that enable the use of
multi-threading to parallelize the code using directives given as comments. The
same source code can be compiled with/without OpenMP.

For example:

| $OMP PARALLEL DEFAULT(SHARED) PRI VATE(i)
I $OVP DO
do i =1,n
AC) = B(i) + C(i)
end do
I $OMP END DO
I $OVMP END PARALLEL

« ISOMP PARALLEL starts a new multi-threaded section. Everything inside this
block is executed by all the threads

125

« ISOMP DO tells the compiler to split the loop among the different threads (by
changing the loop boundaries for instance)

«ISOMP END DO marks the end of the parallel loop. It contains an implicit
synchronization. After this line, all the threads have finished executing the
loop.

« ISOMP END PARALLEL marks the end of the parallel section. Contains also
an implicit barrier.

 DEFAULT(SHARED) : all the variables (A,B,C) are in shared memory by
default

* PRIVATE(i) : the variable i is private to every thread
Other important directives:

« ISOMP CRITICAL ... I$OMP END CRITICAL : all the statements in this block
are protected by a lock

« ISOMP TASK ... ISOMP END TASK : define a new task to execute
« ISOMP BARRIER : synchronization barrier

126

e ISOMP SINGLE ... I$SOMP END SINGLE : all the statements in this block are
executed by a single thread

« ISOMP MASTER ... I$SOMP END MASTER : all the statements in this block are
executed by the master thread

«omp_get _thread num() : returns the ID of the current running thread
«0omp_get_num_threads() : returns the total number of running threads

* OMP_NUM_THREADS : Environment variable (shell) that fixes the number of
threads to run

127

Matrix product : simple OpenMP example

Loop parallelism

A
B

create _matri x()
create_matri x()

[/ parallelize | oop over i and |
for 1=1 to Nusing a step of N2 {
for j=1 to Nusing a step of N2 {
for k=1 to Nusing a step of N2 {
[l Cij = Aik.BKj
DGEW (C(1,]), A(1,k), B(k,j), (N2, N2))
}
}
}

128

program submatri x_opennp
I nplicit none

| nt eger, paraneter .. sze = 5000

doubl e precision, allocatable, dinension (:,:) :: A B, C
doubl e preci si on .. cpu_0O, cpu_ 1l

| nt eger . istart(2), iend(2)

| Nt eger .. Jstart(2), jend(2)

| Nt eger S

| Nt eger o 11,12,]1,)2,step

| nt eger, external .. onp_get _thread num
doubl e preci si on .S

al l ocate (A(sze,sze), B(sze,sze), (C(sze, sze))

C = 0.d0
step = sze/?2

129

I $OMP PARALLEL DEFAULT(NONE) &
I $OVP PRI VATE(i 1,)1,j2,istart,jstart,iend,jend, &
$OMP cpu_O, cpu_1) &
| $OVP SHARED(A, B, C, st ep)

I $OVP MASTER
call wall _tinme(cpu_0)
I $OMP END MASTER

lBuild the submatri ces
I $OMP DO COLLAPSE(2)

do i 1=1, sze, step
do j 2=1, sze, step

Istart(1l) =il
lend(1) = istart(1l)+step-1
jstart(1l) =2

130

jend(1l) = jstart(1l)+step-1

call create matri x(A sze, 7.dO,istart (1), &
lend(1l),jstart(1),jend(1l))
call create matrix(B,sze, 11.dO,istart(1), &
lend(1l),)jstart(1),jend(1l))
enddo
enddo
1 $OVP END DO
| $OVP MASTER
call wall _tinme(cpu_1)
wite(0,*) "Mtrix build tinme : ', cpu_1-cpu 0, 'Ss'

call wall _tinme(cpu_0)
| $OMP END MASTER

| $OVP DO COLLAPSE(2)

do i 1=1, sze, step
do j 2=1, sze, step

131

132

istart(1l) =il
jstart(2) =j2
lend(1l) = istart(1l)+step-1
jend(2) = jstart(2)+step-1
do j 1=1, sze, step
jstart(1l) =j1
Istart(2) =j1
jend(1l) = jstart(1l)+step-1
| end(2) | start(2)+step-1

' Conpute the submatri x product

call dgemm{'N ,' N,
l+iend(1l)-istart(1),
1+jend(1l)-jstart(1),
1+jend(2)-jstart(2),
1.d0, A(istart(1l),jstart(1)), sze,
B(istart(2),jstart(2)), sze,
1.d0, C(istart(1),)start(2)),sze)

Qo Qo Ro Ro Ro Ro

enddo
enddo

enddo

I $OVP END DO

I $OVP MASTER

call wall _tinme(cpu_1)
wite(O0,*) 'Conpute Tine : ', cpu_l-cpu 0, 's'
| $OMP END MASTER

| $OVP END PARALLEL

I Print the sumof the el enents
s = 0.dO0
do j =1, sze
do 1 =1, sze
s = s+((i,])
enddo
enddo

133

deal | ocate (A B, O
print *, s
end

134

Task parallelism
Shared-memory work stealing

A
B

create_matri x()
create matri x()

queue= []

for 1=1 to Nusing a step of N2 {
for j=1 to Nusing a step of N2 {
for k=1 to Nusing a step of N2 {
/[l Cij = Aik.BKj
queue = queue + [(1, jJ, k)]
}
}
}

sem = semaphor e(nproc)

135

function do work(i,j,k) {
DGEMM (A B, C i,],K)
rel ease_senmaphore(sem

}

do while queue is not enpty
{
acqui re_semaphore(semn
/'l Pop out the 1lst el enent of the queue
parans = queue. pop()
pt hread create(do _work, parans)

}

program submatri x_opennp
I nplicit none
| nt eger, paraneter :: sze = 5000
doubl e precision, allocatable, dinension (:,:) :: A B, C

136

doubl e preci si on oowall 0, wall 1

| nt eger o istart(2), iend(2)
| nt eger .. jstart(2), jend(2)
| Nt eger S

| Nt eger 11,112,711,)2,step
doubl e preci sion .S

al l ocate (A(sze,sze), B(sze,sze), (C(sze,sze))

C = 0.d0
step = sze/?2

| $OVP PARALLEL DEFAULT(NONE) &

| $OMP PRI VATE(i 1,j1,)j2,istart,jstart,iend,jend) &
 $OMP SHARED(A, B, C, step,wall _0,wal | 1)

137

138

I $OVP MASTER
call wall _time(wall _0)
' Bui ld the subnmatrices
do i 1=1, sze, step
do j 2=1, sze, step
istart(1l) =il

lend(1) = istart(1l)+step-1

jstart(1l) =2

jend(1l) = jstart(1l)+step-1

I $OMP TASK

call create matrix(A sze,7.d0,istart(1),

I $OVP END TASK
 $OMP TASK

lend(1l),)jstart(1),jend(1))

call create matrix(B,sze,11.dO,istart(1),

I $OVP END TASK

lend(1l),)jstart(1),jend(1l))

enddo
enddo
| $OVP END MASTER

I $OVP TASKWAI T

 $OVP MASTER
call wall _time(wall 1)
wite(0,*) "Mtrix build tinmne : ', wall _1-wall 0, 's'

call wall _tinme(wall _0)
do i 1=1, sze, step
do j 2=1, sze, step

istart(1l) =il
jstart(2) =j2
lend(1l) = istart(l)+step-1

jend(2) = jstart(2)+step-1
do j 1=1, sze, step
jstart(1) =j1

139

140

Istart(2) =j1
jend(1l) = jstart(1l)+step-1
lend(2) = istart(2)+step-1
l Conpute the submatri x product
1 $OVP TASK
call dgem('N ,' N,
l+iend(1l)-istart(l),
1+jend(1)-jstart(l),
1+jend(2)-jstart(2),
1.d0, A(istart(1l),jstart(1)), sze,
B(istart(2),jstart(2)), sze,
1.d0, C(istart(1),jstart(2)),sze)
1 $OVP END TASK
enddo
enddo
enddo
| $OMP END MASTER

R Qo R0 Qo Ro Ro

I $OVP TASKWAI T

| $OMP END PARALLEL
call wall _tinme(wall 1)
wite(0,*) 'Conmpute Tine : ', wall _1-wall _0, 's'

Il Print the sum of the el enents
s = 0.dO
do j =1, sze

do 1 =1, sze

s = s+((1,])

enddo
enddo
deal | ocate (A B, O
print *, s

end

141

Divide and Conquer algorithms

Algorithm based on recursion. The problem is divided in sub-problems that are
solved in the same way as the large problem.

Example : Sum

Suppose you want to compute the sum of all the elements of the array A(1:16).
This sum can be expressed as the sum of the two halves of the array :

S[A(1:16)] = S[A(1:8)] + S[A(9:16)]
The S function will be applied recursively.

142

Python
#!'/usr/ bi n/ pyt hon

sze A = 5000000
A= 1*1.5 for i in range(sze_ A]

def sum hal f (X):
sze = len(X)

143

I f sze > 1 :

return sumhal f (X[:sze/2]) + sumhal f(X[sze/2:])
el se:

return X[O]

S = sum hal f (A
print ' DC . ', s
print 'Exact : 1. 875000375E+13"

Fortran OpenMP

program dc
I nplicit none

real, allocatable o A()

| nt eger, paraneter .. sze = 5000000
r eal .S

| Nt eger S

all ocate (A(sze))

144

I Initialize array
do i =1, sze

A(i) = dble(i)*1.5
enddo

| $OMP PARALLEL DEFAULT(NONE) SHARED(A, s)

I $OVMP SI NGLE
call sumhalf(A(1l), sze, S)
' $OVP END SI NGLE

I $OMP TASKVWAI T
| $OVP END PARALLEL

print *, ‘'Loop : ', sun(A)
print *, 'DC @
print *, 'Exact : 1. 875000375E+13"

145

end

recursive subroutine sum hal f (A, sze, s)

146

i nplicit none

| nteger, intent(in)

real, intent(in)
real, intent(out)
r eal

| Nt eger

If (sze > 1) then
sze new = szel/?2

sze
A(sze)
S

sa, sb
|, Sze _new

I $OVP TASK SHARED(A, sa) FI RSTPRI VATE(sze new)

call sum hal f(A(1),

I $OVP END TASK

Sze_new, sa)

I $OVP TASK SHARED(A, sb) FI RSTPRI VATE(sze new, sze)
call sum hal f (A(sze newtl), sze-sze new, sb)
| $OVP END TASK

I $OVP TASKWAI T

S = sa+sb
el se

s = A(1)
endi f

end

Divide and Conquer matrix product
Pseudo-code

147

recursive subroutine divideAndConquer (A, B, C, sze,iel,|e2)

1 ((iel <).and. (je2 <)) then
cal | DGEMM
el se

| $OMP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, j e2)

cal |l divideAndConquer(& ! +------- + S e e et
ACL, 1), & X I | | | X | I
B(1,1), & ! +--emm - + . + X | + = F---F---+
a1,1), & ! | I | | I I I
Sze, & ! H------- + T e T
| el/ 2, & | A B C
j e2/ 2)

' $OMP END TASK

| $OMP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, j e2)

148

149

cal | divideAndConquer(& ! +------- L T e S
A(L, 1), &t X X
B(1, 1+j e2/2), & ! A4------- + . | X | = +---+---+
(1, 1+) e2/2), & I
Sze, & | +- e a - - + +- - - - -+ R
iel/ 2, & | A B C

je2-(je2l2))
I $OVP END TASK

| $OMP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, j e2)

cal | divideAndConquer(& ! +------- L R e A SRR S
A(l+iel/ 2, 1), &! | | | | | | | |
B(1,1), Sl dmeeeas T I O N B
C(1+iel/2,1), & ! X | | | | X | |
sze, & | S + +- - - - -+ +- - - +-- -+
iel-(iell?2), & ! A B C
j e2/ 2)

' $OMP END TASK

I $OVP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, j e2)

cal | divideAndConquer(& ! +------- L R T e S
A(l+iell2,1), & ! | | | | | | | |
B(1, 1+je2/2), & ! H------- + .| | X | = +---+---+
C(l+iel/2,1+je2/2),& ! | X | | | | | X |
sze, &1 H------- + +o-m - -+ +o- - - - -+
iel-(iell2), & ! A B C

je2-(je2l 2))

I $OVP END TASK
I $OMP TASKWAI T

endi f
end

I $OVP PARALLEL DEFAULT(SHARED)

150

' $OVP SI NGLE
cal | divi deAndConquer (A, B, C, sze, sze, sze)
| $OMP END SI NGLE NOWAI T
I $OVP TASKWAI T
| $OMP END PARALLEL

Fortran implementation

program submatri x_dc
I nplicit none

doubl e precision, allocatable, dinension (:,:) :: A B, C
| nt eger .. Istart(2), iend(2)

| nt eger .. Jstart(2), jend(2)

| nt eger, paraneter .. sze = 5000

doubl e preci si on coowall 0, wall 1

doubl e preci sion .. S

integer :: 11,j1,i2,j2, i,j, step

al l ocate (A(sze,sze), B(sze,sze), (C(sze,sze))

151

call wall _time(wall _0)
C = 0.d0
step = sze/?2

call wall _tinme(wall _0)

| $OMP PARALLEL DEFAULT(NONE) &
| $OVP PRI VATE(i1,j1,j2,istart,jstart,iend,jend) &
| $OMP SHARED(A, B, C, st ep)

I $OVP S| NGLE
lBui ld the submatri ces
do i 1=1, sze, step

do j 2=1, sze, step

istart(1l) =il
lend(1) = istart(1l)+step-1
jstart(1l) =2

152

jend(1l) = jstart(1l)+step-1
| $OMP TASK SHARED(A)
call create matri x(A, sze,7.d0O,istart(1l), &
lend(1l),)jstart(1),jend(1))
1 $OVP END TASK
| $OMP TASK SHAREDX B)
call create matrix(B,sze,11.d0,istart(1l), &
lend(1l),)jstart(1),jend(1l))
1 $OVP END TASK
enddo
enddo
| $SOMP END SI NGLE NOWAI T

I $OVP TASKWAI T
| $OVP END PARALLEL

call wall _time(wall 1)
wite(0,*) "Matrix build tine : ', wall _1-wall 0, 's'

153

call wall _tinme(wall _0)

| $OMP PARALLEL DEFAULT(SHARED)

I $OVP S| NGLE

cal | divideAndConquer (A, B, C, sze, sze, sze)
| $OMP END SI NGLE NOWAI T

| $OMP TASKWAI T

| $OMP END PARALLEL

call wall _tinme(wall 1)
wite(0,*) 'Conmpute Tine : ', wall _1-wall _0, 's'

I Print the sumof the el enents
s = 0.dO0
do j =1, sze
do 1 =1, sze
s = s+((i,])
enddo
enddo

154

deal | ocate (A B, O
print *, s

end

recursive subroutine divideAndConquer (A B, C sze,iel,|je2)
i nplicit none

doubl e preci si on coowall 0, wall 1

| nteger, intent(in) .. Sze

doubl e preci sion, dinension (sze,sze), intent(in) :: A B
doubl e precision, dinension (sze,sze), intent(out) :: C

| nteger, intent(in) o 1el,je2

I1f ((iel < 200).and.(je2 < 200)) then
call dgemm{'N ,' N, &
| el, &
] e2, &

155

sze,

1.d0, A sze,
B, sze,

1.d0, C,sze)

Ro Qo Ro

el se

| $OVP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, | e2)
cal | di vi deAndConquer (

A(l, 1),

B(1,1),

a(1,1),

sze,

| el/ 2,

je2/ 2)

R0 Qo RO Ro Ro Ro

| $OVP END TASK

| $OMP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, j e2)

156

cal | di vi deAndConquer (
A(L, 1),
B(1, 1+ e2/2),
C(1, 1+j e2/ 2),
sze,
| el/ 2,
je2-(je2l 2))
1 $OVP END TASK

R Qo R0 Qo Ro Ro

| $OMP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, | e2)
cal | di vi deAndConquer (
A(l+iel/2,1),
B(1,1),
C(1l+iel/2,1),
sze,
1 el-(iell2),
j e2/ 2)
1 $OVP END TASK

R Qo RO Ro Ro Ro

157

 $OVP TASK SHARED(A, B, C, sze) FI RSTPRI VATE(i el, | e2)
cal | di vi deAndConquer (
A(l+iel/2,1),
B(1, 1+je2/2),
C(1+iell 2,1+ e2/2),
sze,
| el-(iell 2),
je2-(je2/2))

Qo Qo R0 Ro Ro Ro

I $OVP END TASK
I $OVP TASKWAI T

endi f

end

158

Vectorization

Parallelism that happens on a single CPU core.
SIMD : Single Instruction, Multiple Data
Execute the same instruction in parallel on all the elements of a vector:

R] 32 bytes 256 bits

4x real*8 or integer*8

Example : AVX vector ADD in double precision:

+ 1 CPU cycle

Different instruction sets exist in the x86 micro-architecture:
* MMX : Integer (64-bit wide)
* SSE -> SSE4.2 : Integer and Floating-point (128-Dbit)

159

* AVX : Integer and Floating-point (256-bit)

* AVX-512 : Integer and Floating-point (512-bit)
Requirements:

1. The elements of each SIMD vector must be contiguous in memory

2. The first element of each SIMD vector must be aligned on a proper boundary
(64, 128, 256 or 512-bit).

Automatic vectorization

The compiler can generate automatically vector instructions when possible. A
double precision AVX auto-vectorized loop generates 3 loops:

Peel loop (scalar)
First elements until the 256-bit boundary is met

Vector loop
Vectorized version until the last vector of 4 elements

Tail loop (scalar)
Last elements

160

Scalar loop

161

26 cycles

Peel loop

32 byte boundary

Vector loop

Tail loop

Bl B R R R ERERERNDBE.
|

3 cycles

5 cycles

3 cycles

32 byte boundary

Vector loop

Tail loop

®

6 cycles

2 cycles

32 byte boundary

Vector loop

®

7 cycles

Intel specific Compiler directives

To remove the peel loop, you can tell the compiler to align the arrays on a 32 byte
boundary using:

doubl e precision, allocatable :: A(:), B(:)
DIR$ ATTRIBUTES ALIGN : 32 :: A B

Then, before using the arrays in a loop, you can tell the compiler that the arrays
are aligned. Be careful: if one array is not aligned, this may cause a segmentation
fault.

| DI R$ VECTOR ALI GNED
do 1 =1,n

A(il) = A1) + B(i)
end do

To remove the tail loop, you can allocate A such that its dimension is a multiple of
4 elements:

162

. nod(n, 4)
I1f (n_4 == 0) then

n_
el se

n4=n- n4+4
endi f

allocate (A(n_4), B(n_4))
and rewrite the loop as follows:

do i=1,n,4
| DI R$ VECTOR ALI GNED
| DI RS VECTOR ALWAYS
do k=0, 3
A(i +k) = A(1 +k) + B(i +k)
end do
end do

163

In that case, the compiler knows that each inner-most loop cycle can be
transformed safely into only vector instructions, and it will not produce the tail and
peel loops with the branching. For small arrays, the gain can be significant.

For multi-dimensional arrays, if the 1st dimension is a multiple of 4 elements, all
the columns are aligned:

doubl e precision, allocatable :: A(:,:)
DI R$ ATTRIBUTES ALIGN : 32 :: A
al l ocate(A(n_ 4, m)
do j =1, m
do i=1,n, 4
| DI R$ VECTOR ALI GNED
| DI R$ VECTOR ALVAYS
do k=0, 3
A(i+k,j) = A(i+k,j) * B(i+k,j)
end do
end do
end do

164

Warning

In practice, using multiples of 4 elements is not always the best choice. Using
multiples of 8 or 16 elements can be better because the inner-most loop may
be unrolled by the compiler to improve the efficiency of the pipeline.

165

Instruction-level parallelism (ILP)

MIMD : Multiple instruction, Multiple data
With ILP, different execution units are used Iin parallel. For example,
Sandy-Bridge (2011) x86 CPUs can perform simultaneously:

1 vector ADD

1 vector MUL

» 2 vector LOADs

1 vector STORE

1 integer ADD
Ideal for a scalar product (or a matrix product):

do i =1, N
Xx =x + B(1)*C(1)

end do

166

Peak : 4 ADD + 4 MUL per cycle => 8 flops/cycle. For a 10-core CPU at 2.8GHz:
8 x 2.8E9 x 10 = 224 Gflops/s in double precision

Example:

do i =1, N
A(i) = X(1) + Y(i)
end do

and

do i =1, N
A1) = 2.do*(X(1) + Y(i))
end do

take the same amount of time.
Pipelining

Here we consider a typical RISC processor with 4 different stages to perform an
operation:

167

1. Instruction fetch

2. Instruction decode

3. Execution

4. Memory access+ write-back

 \\/B -

.F__.D__ -

Each stage can be executed using different physical units, such that all 4 units
can be kept busy:

=EmgZ
I

168

169

1 2

Clock Cycle

3

4

5

6

7

8

Waiting
Instructions

0
|
|
|

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

PIPELINE
A

Stage 4: Write-back

Completed
Instructions

In this example:

Latency
4 cycles. It takes 4 cycles to perform one single operation

Throughput
1 cycle. We get one result every cycle

Out of order execution

Inside the CPU, the instructions are not executed in the exact sequence of the
code, provided that it does not affect the result: independent instructions can be
executed in any order.

The CPU can choose an execution order that improves the efficiency of the
pipeline.

Branch prediction

When an if statement occurs, two paths can be taken by the program: it is a
branch.

The pipeline has to be filled differently depending on the branch.

170

Branch prediction: the CPU assumes that one branch is more likely to be chosen,
and fills the pipeline for it (speculative execution).

If the branch is mispredicted, the pipeline is emptied and the calculation is rolled
back.

Branch mispredictions can have a large penalty on the execution.
Many branch predictors exist:

« Static predictor : always assume the condition is true

« Saturating counter : 1. Strongly not taken 2. Weakly not taken 3. Weakly taken
4. Strongly taken

* Two-level adaptive predictor : a branch might be taken depending upon
whether the previous two were taken

 Local branch prediction : one history buffer (~4 bits) for each conditional
» Global branch prediction : keep a global history buffer for all branches
 Loop predictor

etc...
Example:

171

if (mod(i,2) == 0) then

o Static : 50% success
« Saturating : 50% success
e Local : 100% success (history = 1010)

Links
*"Pipeline-base" by Hellisp - Own work. Licensed under Public domain via
Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Pipeline-base.png

172

http://commons.wikimedia.org/wiki/File:Pipeline-base.png

*"Pipeline, 4 stage" by en:User.Cburnett - Own workThis vector image was
created with Inkscape.. Licensed under Creative Commons Attribution-Share
Alike 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Pipeline, 4 stage.svg

173

Summary

» Multiple levels of parallelism : Coarse-grained -> Fine-grained

» Coarse-grained will give the highest level of parallel efficiency (lowest
Communication/Computation ratio)

* Different levels of parallelism can be combined

174

The tools you use should be adapted to your problem:
For example

» doing a Monte Carlo calculation using OpenMP is a bad choice:

« Shared memory is not required

« Communication is generally low

» Synchronization barriers can be avoided

» Scaling would be limited to the number of cores/node
 diagonalizing a matrix with XML-RPC would not give a good scaling:

* A lot of communication (matrix products)

« Synchronizations necessary
If you need to do a Monte Carlo calculation where every Monte Carlo step
diagonalizes a very large matrix, you can use OpenMP for the diagonalization
and XML-RPC for the distribution of the MC steps.

175

	Intro
	What is parallelism?
	Problem 1 : Potential energy surface
	GNU Parallel
	Convert thousands of images from .gif to .jpg

	Potential energy surface
	1. Fetch the energy in an output file
	2. Script that takes r1, r2 and angle as arguments
	3. Files containing arguments
	4. Run with GNU parallel

	Links

	Problem 2 : Computation of Pi
	Inter-process communication
	Processes vs threads
	Communication with named pipes
	Example

	Communication with unnamed pipes
	Example
	Computation of with pipes

	Sockets
	Computation of with sockets

	Remote procedure call (RPC)
	XML-RPC simple example
	Monte Carlo Calculation of with XML-RPC

	Problem 3 : Numerical computation of a 2-electron integral
	Message Passing Interface
	Synchronization
	Point-to-point send/receive operation
	Collective communications
	Two-electron integral using MPI
	Links

	Coarray Fortran (CAF)
	Calculation of the 2-electron integral
	Links

	Problem 4: Parallelization of a matrix product
	Threads
	pthreads
	Locks

	OpenMP
	Matrix product : simple OpenMP example
	Loop parallelism
	Task parallelism

	Divide and Conquer algorithms
	Example : Sum
	Divide and Conquer matrix product

	Vectorization
	Automatic vectorization
	Intel specific Compiler directives

	Instruction-level parallelism (ILP)
	Pipelining
	Out of order execution
	Branch prediction
	Links

	Summary

