
Parallel programming
Nicolas Renon
CALMIP (Toulouse)

Anthony Scemama <scemama@irsamc.ups-tlse.fr>
http://scemama.mooo.com
Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Intro
All the source files of this course can be found on GitHub:

http://github.com/scemama/tccm2014

Warning

You are not expected to be able to do by yourself everything I will show!

My goal:

• Show you different visions of parallel computing

• Introduce some words you will here in the future

• Show you what exists, what can be done, and how
Don't panic and consider this class as general knowledge.

If you don't understand something, please STOP ME!

1

http://github.com/scemama/tccm2014

What is parallelism?
When solving a problem, multiple calculations can be carried out concurrently. If
multiple computing hardware is used, concurrent computing is called parallel
computing.

Many levels of parallelism:

• Distributed, Loosely-coupled : Computing grids : shell scripts

• Distributed, Tightly-coupled : Supercomputers : MPI, sockets, CoArray Fortran,
UPC,...

• Hybrid: wth accelerators like GPUs, FPGAs, Xeon Phi, etc

• Shared memory : OpenMP, threads

• Socket-level : Shared cache

• Instruction-level : superscalar processors

• Bit-level : vectorization
All levels of parallelism can be exploited in the same code, but every problem is
not parallelizable at all levels.

2

Index
Intro 1

What is parallelism? 2

Problem 1 : Potential energy surface 7

GNU Parallel 9

Potential energy surface 14

Links 20

Problem 2 : Computation of Pi 21

Inter-process communication 26

Processes vs threads 26

Communication with named pipes 27

Communication with unnamed pipes 31

Sockets 46

Remote procedure call (RPC) 62

3

Problem 3 : Numerical computation of a 2-electron integral 84

Message Passing Interface 87

Synchronization 89

Point-to-point send/receive operation 89

Collective communications 90

Two-electron integral using MPI 93

Links 101

Coarray Fortran (CAF) 102

Calculation of the 2-electron integral 104

Links 109

Problem 4: Parallelization of a matrix product 110

Threads 118

pthreads 118

Locks 121

4

OpenMP 125

Matrix product : simple OpenMP example 128

Loop parallelism 128

Task parallelism 135

Divide and Conquer algorithms 142

Example : Sum 142

Divide and Conquer matrix product 147

Vectorization 159

Automatic vectorization 160

Intel specific Compiler directives 162

Instruction-level parallelism (ILP) 166

Pipelining 167

Out of order execution 170

Branch prediction 170

5

Links 172

Summary 174

6

Problem 1 : Potential energy surface
We want to create the CCSD(T) potential energy surface of the water molecule.

7

Constraints:

• We want to compute 25x25x25 = 15625 points

• We are allowed to use 100 CPU cores simultaneously

• We like to use Gaussian09 to calculate the CCSD(T) energy
But:

• The grid points are completely independent

• Any CPU core can calculate any point
Optimal solution: work stealing

• One grid point is E(r1,r2,angle)

• Dress the list of all the arguments (r1,r2,angle) : [(0.8,0.8,70.), ...,
(1.1,1.1,140.)] (the queue)

• Each CPU core, when idle, pops out the head of the queue and computes
E(r1,r2,angle)

• All the results are stored in a single file

• The results are sorted for plotting

8

GNU Parallel
GNU parallel executes Linux commands in parallel and can guarantee that the
output is the same as if the commands were executed sequentially.

Example:

$ parallel echo ::: A B C
A
B
C

is equivalent to:

$ echo A ; echo B ; echo C

Multiple input sources can be given:

$ parallel echo ::: A B ::: C D
A C
A D

9

B C
B D

If no command is given after parallel the arguments are treated as commands:

$ parallel ::: pwd hostname "echo $TMPDIR"
/home/scemama
lpqdh82
/tmp

Jobs can be run on remote servers:

$ parallel ::: echo hostname
lpqdh82.ups-tlse.fr

$ parallel -S lpqlx139.ups-tlse.fr ::: echo hostname
lpqlx139.ups-tlse.fr

File can be transfered to the remote hosts:

10

$ echo Hello > input
$ parallel -S lpqlx139.ups-tlse.fr cat ::: input
cat: input: No such file or directory

$ echo Hello > input
$ parallel -S lpqlx139.ups-tlse.fr --transfer --cleanup cat ::: input
Hello

11

Convert thousands of images from .gif to .jpg
$ ls
img1000.gif img241.gif img394.gif img546.gif img699.gif img850.gif
img1001.gif img242.gif img395.gif img547.gif img69.gif img851.gif
[...]
img23.gif img392.gif img544.gif img697.gif img849.gif
img240.gif img393.gif img545.gif img698.gif img84.gif

To convert one .gif file to .jpg format:

$ time convert img1.gif img1.jpg
real 0m0.008s
user 0m0.000s
sys 0m0.000s

Sequential execution:

$ time for i in {1..1011}
> do
> convert img${i}.gif img${i}.jpg

12

> done
real 0m7.936s
user 0m0.210s
sys 0m0.270s

Parallel execution on a quad-core:

$ time parallel convert {.}.gif {.}.jpg ::: *.gif
real 0m2.051s
user 0m1.000s
sys 0m0.540s

13

Potential energy surface
1. Fetch the energy in an output file
Running a CCSD(T) calculation with Gaussian09 gives the energy somewhere in
the output:

CCSD(T)= -0.76329294074D+02

To get only the energy in the output, we can use the following command:

g09 < input | grep "^ CCSD(T)=" | cut -d "=" -f 2

2. Script that takes r1, r2 and angle as arguments
We create a script run_h2o.sh that runs Gaussian09 for the water molecule taking
r1, r2, and angle as command-line parameters, and prints the CCSD(T) energy:

#!/bin/bash

r1=$1

14

r2=$2
angle=$3

Create Gaussian input file, pipe it to Gaussian, grep the CCSD(T)
energy
cat << EOF | g09 | grep "^ CCSD(T)=" | cut -d "=" -f 2
CCSD(T)/cc-pVTZ

Water molecule r1=${r1} r2=${r2} angle=${angle}

0 1
h
o 1 ${r1}
h 2 ${r2} 1 ${angle}

EOF

Example:

15

$./run_h2o.sh 1.08 1.08 104.
-0.76310788178D+02
$./run_h2o.sh 0.98 1.0 100.
-0.76330291742D+02

3. Files containing arguments
We prepare a file r1_file containing the r values:

0.75
0.80
0.85
0.90
0.95
1.00

then, a file angle_file containing the angle values:

100.
101.

16

102.
103.
104.
105.
106.

and a file nodefile containing the names of the machines and their number of
CPUs:

2//usr/bin/ssh compute-0-10.local
2//usr/bin/ssh compute-0-6.local
16//usr/bin/ssh compute-0-12.local
16//usr/bin/ssh compute-0-5.local
16//usr/bin/ssh compute-0-7.local
6//usr/bin/ssh compute-0-1.local
2//usr/bin/ssh compute-0-13.local
4//usr/bin/ssh compute-0-8.local

17

4. Run with GNU parallel
Let's first run the job on 1 CPU:

$ time parallel -a r1_file -a r1_file -a angle_file \
 --keep-order --tag -j 1 $PWD/run_h2o.sh
0.75 0.75 100. -0.76185942070D+02
0.75 0.75 101. -0.76186697072D+02
0.75 0.75 102. -0.76187387594D+02
[...]
0.80 1.00 106. -0.76294078963D+02
0.85 0.75 100. -0.76243282762D+02
0.85 0.75 101. -0.76243869316D+02
[...]
1.00 1.00 105. -0.76329165017D+02
1.00 1.00 106. -0.76328988177D+02

real 15m5.293s
user 11m25.679s

18

sys 2m20.194s

Running in parallel on 64 CPUs with the --keep-order option, the output is the
same, but it takes 39x less time!

$ time parallel -a r1_file -a r1_file -a angle_file \
 --keep-order --tag --sshloginfile nodefile $PWD/run_h2o.sh
0.75 0.75 100. -0.76185942070D+02
0.75 0.75 101. -0.76186697072D+02
0.75 0.75 102. -0.76187387594D+02
[...]
0.80 1.00 106. -0.76294078963D+02
0.85 0.75 100. -0.76243282762D+02
0.85 0.75 101. -0.76243869316D+02
[...]
1.00 1.00 105. -0.76329165017D+02
1.00 1.00 106. -0.76328988177D+02

real 0m23.848s

19

user 0m3.359s
sys 0m3.172s

Links
• O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login: The
USENIX Magazine, February 2011:42-47.

• GNU parallel

• GNU parallel tutorial

20

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/parallel_tutorial.html

Problem 2 : Computation of Pi
We want to compute the value of with a Monte Carlo algorithm.

• The surface of the circle is => For a unit circle, the surface is

• The function in the red square is (the circle is)

• The surface in grey corresponds to

21

Z 1

0

q
1¡x2 dx=¼=4

To compute this integral, a Monte Carlo algorithm can be used:

• Points are drawn randomly in the unit square.

• Count how many times the points are inside the circle

• The ratio (inside)/(inside+outside) is .

22

Constraints:

• A large number of Monte Carlo steps will be computed ()

• We are allowed to use 100 CPU cores simultaneously

• We stop when the statistical error is below a given threshold ()
Optimal algorithm:

• Each CPU core computes the its own average over a smaller
number of Monte Carlo steps ()

compute_pi() {
 result := 0
 for i=1 to NMAX {
 x = random() ; y = random()
 if (x^2 + y^2 <= 1) {
 result := result + 1
 }
 }
 return 4*result/NMAX

23

}

• All results obtained on different CPU cores are independent, so they are
Gaussian-distributed random variables (central-limit theorem)

• The are sent to a central server

• The central server computes the running average

¼» ¹X= 1
M

MX

i=1
Xi

and the variance

¾2 = 1
M¡1

MX

i=1
(Xi¡ ¹X)2

to compute the statistical error as

• The clients compute blocks as long as the central server asks them to do so
when is above the target error

24

Client

Server

X

Client

X

Client

X

Client

X

Here, the calculations are no more independent: the stopping criterion depends
on the results of all previous runs. We have introduced very simple inter-process
communications.

25

Inter-process communication

Processes vs threads
Process:

• Has its own memory address space

• Context switching between processes is slow

• Processes interact only through system-provided communication mechanisms

• Fork: creates a copy of the current process

• Exec: switches to running another binary executable

• Spawn: Fork and exec on the child
Theads:

• Exist as subsets of a process

• Context switching between threads is fast

• Share the same memory address space : interact via shared memory

26

Communication with named pipes
A named pipe is a virtual file which is read by a process and written by other
processes. It allows processes to communicate using standard I/O operations:

27

Example

28

Process 1: p1.sh

#!/bin/bash

Create two pipes using the mkfifo command
mkfifo /tmp/pipe /tmp/pipe2
Unzip the input file and write the result
in the 1st pipe
echo "Run gunzip"
gunzip --to-stdout input.gz > /tmp/pipe

Zip what comes from the second pipe
echo "Run gzip"
gzip < /tmp/pipe2 > output.gz

Clear the pipes in the filesystem
rm /tmp/pipe /tmp/pipe2

Process 2: p2.sh

29

#!/bin/bash

Read the 1st pipe, sort the result and write
in the 2nd pipe
echo "Run sort"
sort < /tmp/pipe > /tmp/pipe2

Execution:

$./p1.sh &
Run gunzip
$./p2.sh
Run sort
Run gzip
[1]+ Done ./p1.sh

This simple example is equivalent to:

gunzip --to-stdout input.gz | sort | gzip > output.gz

30

But the two programs p1.sh and p2.sh:

• can be started independently : p1 waits for p2 (blocking)

• can be run in different shells

• named pipes allow multiple processes to write in the same pipe

Communication with unnamed pipes
Unnamed pipes are equivalent to pipes, but they are opened/closed in the
programs themselves. They imply a modification of the source files (apart from
using unnamed pipes in the shell with the | operator).

31

Example

32

#!/usr/bin/env python

import sys,os

def main():
 # Print process ID (PID) of the current process
 print "PID: %d" % (os.getpid())

 # Open the pipe for inter-process communication
 r, w = os.pipe()

 new_pid = os.fork()
 if new_pid != 0:
 # This is the parent process
 print "I am the parent, my PID is %d"%(os.getpid())
 print "and the PID of my child is %d"%(new_pid)
 # Close write and open read file descriptors
 os.close(w)

33

 r = os.fdopen(r,'r')
 # Read data from the child
 print "Reading from the child"
 s = r.read()
 r.close()
 print "Read '%s' from the child"%(s)

 else:
 # This is the child process
 print " I am the child, my PID is %d"%(os.getpid())
 # Close read and open write file descriptors
 os.close(r)
 w = os.fdopen(w,'w')
 print " Sending 'Hello' to the parent"
 # Send 'Hello' to the parent
 w.write("Hello!")
 w.close()
 print " Sent 'Hello'"

34

if __name__ == "__main__":
 main()

$./fork.py
PID: 5804
I am the parent, my PID is 5804
and the PID of my child is 5805
 I am the child, my PID is 5805
Reading from the child
 Sending 'Hello' to the parent
 Sent 'Hello'
Read 'Hello!' from the child

35

Computation of with pipes
Pseudo-code

for i=1 to NPROC {
 pipe(i) := create_pipe()
 fork()
 if (Child process) {
 close(pipe(i).read)
 open (pipe(i).write)
 do {
 X := compute_pi()
 write X into pipe
 if (failure) {
 exit process
 }
 }
 }
 close(pipe(i).write)

36

 open (pipe(i).read)
}

data := []
N := 0
do {
 for i=1 to NPROC {
 X := pipe(i).read()
 data := data+[X]
 N := N+1
 ave := average(data)
 err := error (data)
 if (error < error_threshold) {
 print ave and err
 exit process
 }
 }
}

37

Python implementation

#!/usr/bin/env python

NMAX = 10000000 # Nb of MC steps/process
NMAX_inv = 1.e-7
error_threshold = 1.0e-4 # Stopping criterion
NPROC=4 # Use 4 processes

import os
from random import random, seed
from math import sqrt

def compute_pi():
 """Local Monte Carlo calculation of pi"""
 # Initialize random number generator
 seed(None)

 result = 0.

38

 # Loop 10^7 times
 for i in xrange(NMAX):
 # Draw 2 random numbers x and y
 x = random()
 y = random()
 # Check if (x,y) is in the circle
 if x*x + y*y <= 1.:
 result += 1
 # X = estimation of pi
 result = 4.* float(result)*NMAX_inv
 return result

import sys

def main():
 # Reading edges of the pipes
 r = [None]*NPROC

39

 # Running processes
 pid = [None]*NPROC

 for i in range(NPROC):
 # Create the pipe
 r[i], w = os.pipe()
 # Save the PIDs
 pid[i] = os.fork()
 if pid[i] == 0:
 # This is the child process
 os.close(r[i])
 w = os.fdopen(w,'w')
 while True:
 # Compute pi on this process
 X = compute_pi()
 # Write the result in the pipe
 try:

40

 w.write("%f\n"%(X))
 w.flush()
 except IOError:
 # Child process exits here
 sys.exit(0)
 else:
 # This is the parent process
 os.close(w)
 r[i] = os.fdopen(r[i],'r')

 data = []
 while True:
 for i in range(NPROC):
 # Read in the pipe of the corresponding process
 X = float(r[i].readline())
 data.append(float(X))
 N = len(data)

41

 # Compute average
 average = sum(data)/N

 # Compute variance
 if N > 2:
 l = [(x-average)*(x-average) for x in data]
 variance = sum(l)/(N-1.)
 else:
 variance = 0.

 # Compute error
 error = sqrt(variance)/sqrt(N)

 print '%f +/- %f'%(average,error)

 # Stopping condition
 if N > 2 and error < error_threshold:

42

 # Kill children
 for i in range(NPROC):
 try: os.kill(pid[i],9)
 except: pass
 sys.exit(0)

if __name__ == '__main__':
 main()

$./pi_fork.py
3.142317 +/- 0.000000
3.141778 +/- 0.000000
3.141344 +/- 0.000534
3.141377 +/- 0.000379
3.141422 +/- 0.000297
3.141443 +/- 0.000243
3.141485 +/- 0.000210

43

[...]
3.141513 +/- 0.000041
3.141513 +/- 0.000041
3.141514 +/- 0.000040
3.141512 +/- 0.000040
3.141513 +/- 0.000040
3.141515 +/- 0.000040

44

 3.1413

 3.14135

 3.1414

 3.14145

 3.1415

 3.14155

 3.1416

 3.14165

 3.1417

 0 20 40 60 80 100 120 140 160 180

P
i

Number of blocks

Convergence of the Monte Carlo average

45

Sockets
Sockets are analogous to pipes, but they allow both ends of the pipe to be on
different machines connected by a network interface. An Internet socket is
characterized by a unique combination of :

• A transport protocol: TCP, UDP, raw IP, ...

• A local socket address: Local IP address and port number, for example
192.168.2.2:22

• A remote socket address: Optional (TCP)

46

Pseudo-code

47

Server code:

HOSTNAME := "server.tccm.fr"
PORT := 2014
socket := create_INET_socket()
bind(socket, (HOSTNAME, PORT))
listen(socket)
(client_socket, address) := accept(socket)
data = recv(client_socket)
send(client_socket,"Thank you")
close(client_socket)

Client code:

HOSTNAME := "server.tccm.fr"
PORT := 2014
socket := create_INET_socket()
connect(socket, (HOSTNAME, PORT))
message = "Hello, world !!!!!!"

48

send(socket,message)
reply = recv(socket)

Python implementation

Server code:

#!/usr/bin/env python

import sys,os
import socket
import datetime # For printing the time

now = datetime.datetime.now

def main():
 # Get host name
 HOSTNAME = socket.gethostname()
 PORT = 11279

49

 print now(), "I am the server : %s:%d"%(HOSTNAME,PORT)

 # Create an INET socket
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Bind the socket to the address and port
 s.bind((HOSTNAME, PORT))

 # Wait for incoming connections
 s.listen(5)

 # Accept connection
 conn, addr = s.accept()
 print now(), "Connected by", addr

 # Buffered read of the socket
 print now(), "Reading from socket"
 data = ""

50

 while True:
 message = conn.recv(8)
 print now(), "Buffer : "+message
 data += message
 if message == "" or len(message) < 8: break
 print now(), "Received data : ", data

 print now(), "Sending thank you..."
 conn.send("Thank you")
 print now(), "Closing socket"
 conn.close()

if __name__ == "__main__":
 main()

Client code:

51

#!/usr/bin/env python

import sys,os
import socket
import datetime

now = datetime.datetime.now

def main():
 # Get host name
 HOSTNAME = sys.argv[1]
 PORT = int(sys.argv[2])
 print now(), "The target server is : %s:%d"%(HOSTNAME,PORT)

 # Create an INET socket
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Connect the socket to the address and port of the server

52

 s.connect((HOSTNAME, PORT))

 # Send the data
 message = "Hello, world !!!!!!"
 print now(), "Sending : "+message
 s.send(message)

 # Read the reply of the server
 data = s.recv(1024)
 s.close()
 print now(), 'Received: ', data

if __name__ == "__main__":
 main()

Server execution:

$./sock_server.py
2014-09-04 01:13:49.903443 I am the server : lpqdh82:11279

53

2014-09-04 01:13:53.387956 Connected by ('127.0.0.1', 44373)
2014-09-04 01:13:53.388007 Reading from socket
2014-09-04 01:13:53.388029 Buffer : Hello, w
2014-09-04 01:13:53.388046 Buffer : orld !!!
2014-09-04 01:13:53.388060 Buffer : !!!
2014-09-04 01:13:53.388071 Received data : Hello, world !!!!!!
2014-09-04 01:13:53.388081 Sending thank you...
2014-09-04 01:13:53.388157 Closing socket

Client execution:

$./sock_client.py lpqdh82 11279
2014-09-04 01:13:53.387347 The target server is : lpqdh82:11279
2014-09-04 01:13:53.387880 Sending : Hello, world !!!!!!
2014-09-04 01:13:53.388277 Received: Thank you

54

Computation of with sockets
Server:

#!/usr/bin/env python

HOSTNAME = "localhost"
PORT = 1666
error_threshold = 4.e-5 # Stopping criterion

import sys,os
import socket
from math import sqrt

def main():
 data = []

 # Create an INET socket
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

55

 # Bind the socket to the address and port
 s.bind((HOSTNAME, PORT))

 while True:
 # Wait for incoming connections
 s.listen(5)

 # Accept connection
 conn, addr = s.accept()

 # Buffered read of the socket
 X = ""
 while True:
 message = conn.recv(128)
 X += message
 if message == "" or len(message) < 128: break

56

 data.append(float(X))
 N = len(data)

 # Compute average
 average = sum(data)/N

 # Compute variance
 if N > 2:
 l = [(x-average)*(x-average) for x in data]
 variance = sum(l)/(N-1.)
 else:
 variance = 0.

 # Compute error
 error = sqrt(variance)/sqrt(N)

 print '%f +/- %f'%(average,error)

57

 # Stopping condition
 if N > 2 and error < error_threshold:
 conn.send("STOP")
 break
 else:
 conn.send("OK")

 conn.close()

if __name__ == "__main__":
 main()

Client:

#!/usr/bin/env python

NMAX = 10000000 # Nb of MC steps/process
NMAX_inv = 1.e-7
HOSTNAME = "localhost"

58

PORT = 1666

from random import random, seed
import socket
import sys

def compute_pi():
 """Local Monte Carlo calculation of pi"""
 # Initialize random number generator
 seed(None)

 result = 0.
 # Loop 10^7 times
 for i in xrange(NMAX):
 # Draw 2 random numbers x and y
 x = random()
 y = random()
 # Check if (x,y) is in the circle

59

 if x*x + y*y <= 1.:
 result += 1
 # X = estimation of pi
 result = 4.* float(result)*NMAX_inv
 return result

def main():

 while True:
 X = compute_pi()

 # Create an INET socket
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # Connect the socket to the address and port of the server
 try:
 s.connect((HOSTNAME, PORT))
 except socket.error:

60

 break

 # Send the data
 message = str(X)
 s.send(message)

 # Read the reply of the server
 reply = s.recv(128)
 s.close()

 if reply == "STOP":
 break

if __name__ == '__main__':
 main()

61

Remote procedure call (RPC)
RPC enables software written in different languages and running on different
computers to work with each other seamlessly.

One program running in a process (the client) calls a function belonging to
another program running in another process (the server).

All the inter-process communication is hidden.

62

1. The client calls the stub : the parameters are converted to a standard
representation (de-referencing pointers, big/little endian, etc)

2. The client stub marshals the parameters : they are packed together in a
message.

3. The message is sent to the server

4. The server transmits the message to the server stub

5. The server stub unmarshals the message

6. The server calls its subroutine with the parameters

7. The output is sent back to the client using the same mechanism

63

Some RPC implementations:

• XML-RPC: XML is the encoding format and HTTP is the transport protocol

• JSON-RPC: JSON is the encoding format and HTTP is the transport protocol

• SOAP: Simple Object Access Protocol. Uses XML for encoding, but can use
HTTP, HTTPS, SMTP, UDP, ... transport protocols

• CORBA: Common Object Request Broker Architecture

• etc...

64

XML-RPC simple example
Pseudo-code

Server code

function_1(x1) { ... }
function_2(y1,y2) { ... }

server := create_XML_RPC_server((HOSTNAME, PORT))
server.register (function_1, function_2)
server.start()

Client code

server := connect_XML_RPC_server((HOSTNAME,PORT))

result_1 := server.function_1(x1)
result_2 := server.function_2(y1,y2)

Python implementation

65

Server code

#!/usr/bin/env python

import SimpleXMLRPCServer
import socket

class MyServer(object):

 def hostname(self):
 """Returns the name of the host on which the server runs"""
 return socket.gethostname()

 def split(self, string):
 """Splits a string in a list of words"""
 return string.split()

66

def main():
 # Display the name of the server in the standard output
 host = socket.gethostbyname(socket.gethostname())
 port = 8000
 print "Server URL is http://%s:%d"%(host,port)

 # Create an instance of the server
 server = SimpleXMLRPCServer.SimpleXMLRPCServer((host, port))

 # Associate all functions of MyServer with the server
 server.register_instance(MyServer())

 # Start the server
 server.serve_forever()

if __name__ == '__main__':
 main()

Client code

67

#!/usr/bin/env python

from socket import gethostname
import sys
import xmlrpclib # XML-RPC library

def main():
 host = gethostname()
 print 'This host is: %s'%(host)

 # The URL of the server is the 1st argument of the command line
 url = sys.argv[1]

 # Create a proxy object for the server
 server = xmlrpclib.Server(url)

 # Run the 'hostname' function on the server and print the output
 remote = server.hostname()

68

 print 'Remote host is: %s'%(remote)

 # Run the 'split' function on the server and print the output
 s = "This is the string to split"
 splitted = server.split(s)
 print 'Splitted string has type:', type(splitted)
 print str(splitted)

if __name__ == '__main__':
 main()

Execution

scemama@lpqdh82 $./xmlrpc_server.py
Server URL is http://192.168.2.8:8000
lpqdh82 - - [29/Jul/2014 01:08:06] "POST /RPC2 HTTP/1.1" 200 -
lpqdh82 - - [29/Jul/2014 01:08:06] "POST /RPC2 HTTP/1.1" 200 -

69

scemama@pi $./xmlrpc_client.py http://192.168.2.8:8000
This host is: pi
Remote host is: lpqdh82
Splitted string has type: <type 'list'>
['This', 'is', 'the', 'string', 'to', 'split']

70

Monte Carlo Calculation of with XML-RPC
Pseudo-code

Server code:

data = []
server_is_running := False

subroutine set_result(X) {
 data := data + [X]
 if (get_error() <= error_threshold) {
 server_is_running := False
 }
}

function get_average() {
 return sum(data) / (length(data))
}

71

function get_variance() {
 average := get_average()
 v := 0
 for all x in data {
 v := variance + (x-average)^2
 }
 return v/(length(data)-1)
}

function get_error() {
 return sqrt(get_variance() / (length(data)))
}

server := create_XML_RPC_server((HOSTNAME, PORT))
server.register (set_result)
server.start()
server_is_running := True
while (server_is_running) {

72

 server.handle_request()
}

print get_average(), get_error()

Client code:

function compute_pi() {
 ...
}

server := connect_XML_RPC_server((HOSTNAME,PORT))

loop := True
while (loop) {
 X := compute_pi()
 reply := server.set_result(X)
 loop := (reply = "CONTINUE")
}

73

Python implementation

Server code:

#!/usr/bin/python -u

from SimpleXMLRPCServer import SimpleXMLRPCServer
from math import sqrt
from time import gmtime, strftime

Termination condition
error_threshold = 1.e-4

class PiServer(object):

 def __init__(self):
 """Initialization of the server"""
 # Data is stored in a list
 self.data = []

74

 # N is the number of random events
 self.N = 0

 def set_result(self,value,address):
 """Adds a value coming from a given host"""
 self.data.append(value)
 self.N += 1
 # Termination condition is calculated now
 if self.N > 4 and self.error() < error_threshold:
 self.terminate()
 result = 0
 else:
 result = 1
 # Each time a new event is added, display the
 # current average and error
 self.print_status(address)
 return result

75

 def terminate(self):
 """Terminate the run"""
 global running
 running = False

 def average(self):
 """Computes the running average"""
 return sum(self.data)/self.N

 def variance(self):
 """Computes the variance"""
 x_ave = self.average()
 l = [(x-x_ave)*(x-x_ave) for x in self.data]
 if self.N < 2:
 return 0.
 return sum(l)/(self.N-1)

 def error(self):

76

 """Computes the error bar"""
 return sqrt(self.variance())/sqrt(self.N)

 def print_status(self,address):
 """Displays something like:
 [15:39:59 127.0.0.1] : 3.141336 +/- 0.000120 (7)
 """
 time = strftime("%H:%M:%S", gmtime())
 print "[%8s %15s] : %f +/- %f (%4d)"%(time, address,
 self.average(), self.error(),self.N)

running = True

from socket import gethostbyname, gethostname
import sys

77

def main():
 # Print the URL and port number of the server
 host = gethostbyname(gethostname())
 port = 8000
 print >>sys.stderr, "Server URL is http://%s:%d"%(host,port)

 # Create the server
 server = SimpleXMLRPCServer((host, port), logRequests=False)

 # All functions of PiServer are accessible via XML-RPC
 server.register_instance(PiServer())

 # Run while the global variable 'running' is True
 while running:
 server.handle_request()

if __name__ == '__main__':
 main()

Client code:

78

#!/usr/bin/env python

Compute X as an average over 10^7 MC steps
NMAX = 10000000
NMAX_inv = 1.e-7

from random import random, seed

def compute_pi():
 """Local Monte Carlo calculation of pi"""
 # Initialize random number generator
 seed(None)

 result = 0.
 # Loop 10^7 times
 for i in xrange(NMAX):
 # Draw 2 random numbers x and y
 x = random()

79

 y = random()
 # Check if (x,y) is in the circle
 if x*x + y*y <= 1.:
 result += 1
 # X = estimation of pi
 result = 4.* float(result)*NMAX_inv
 return result

import sys
import xmlrpclib
from socket import gethostbyname, gethostname

def main():
 # The URL of the server is the 1st command line argument
 url = sys.argv[1]
 address = gethostbyname(gethostname())
 # Proxy for the XML-RPC server

80

 server = xmlrpclib.Server(url)
 loop = True
 while loop:
 # Get a new estimate of pi
 pi = compute_pi()
 # If it is not possible to set the result on the
 # server, the server is down so stop the calculation
 try:
 cont = server.set_result(pi,address)
 loop = (cont == 1)
 except:
 loop = False

if __name__ == '__main__':
 main()

Example fo execution using a single client:

81

$ time ./pi_server.py
Server URL is http://130.120.229.82:8000
[15:43:26 130.120.229.82] : 3.141130 +/- 0.000000 (1)
[15:43:29 130.120.229.82] : 3.141475 +/- 0.000345 (2)
[15:43:33 130.120.229.82] : 3.141237 +/- 0.000310 (3)
[15:43:37 130.120.229.82] : 3.141429 +/- 0.000292 (4)
[15:43:40 130.120.229.82] : 3.141494 +/- 0.000235 (5)
[15:43:44 130.120.229.82] : 3.141573 +/- 0.000207 (6)
[15:43:48 130.120.229.82] : 3.141626 +/- 0.000183 (7)
[15:43:51 130.120.229.82] : 3.141663 +/- 0.000163 (8)

Average is 3.5 seconds/block

Example fo execution using a multiple clients:

$ time ./pi_server.py
Server URL is http://130.120.229.82:8000
[15:39:56 127.0.0.1] : 3.141700 +/- 0.000000 (1)
[15:39:56 127.0.0.1] : 3.141630 +/- 0.000070 (2)
[15:39:57 127.0.0.1] : 3.141590 +/- 0.000057 (3)

82

[15:39:58 127.0.0.1] : 3.141404 +/- 0.000191 (4)
[15:39:58 130.120.229.23] : 3.141325 +/- 0.000167 (5)
[15:39:58 130.120.229.23] : 3.141306 +/- 0.000138 (6)
[15:39:59 127.0.0.1] : 3.141336 +/- 0.000120 (7)
[15:40:00 127.0.0.1] : 3.141444 +/- 0.000150 (8)
[...]
[15:40:58 130.120.229.82] : 3.141526 +/- 0.000041 (177)
[15:40:58 130.120.229.82] : 3.141522 +/- 0.000041 (178)
[15:40:59 127.0.0.1] : 3.141524 +/- 0.000041 (179)
[15:40:59 130.120.229.23] : 3.141524 +/- 0.000041 (180)
[15:40:59 127.0.0.1] : 3.141523 +/- 0.000041 (181)
[15:41:00 127.0.0.1] : 3.141521 +/- 0.000040 (182)
[15:41:00 130.120.229.29] : 3.141518 +/- 0.000040 (183)
[15:41:00 130.120.229.27] : 3.141520 +/- 0.000040 (184)
[15:41:00 127.0.0.1] : 3.141517 +/- 0.000040 (185)
real 1m9.958s
user 0m0.168s
sys 0m0.028s

Average is 0.37 seconds/block

83

Problem 3 : Numerical computation of a
2-electron integral
We want to compute numerically the value of the following integral:­

Á1Á2 jÁ3Á4

®
=

ZZ
Á1 (r1)Á2 (r2) 1

r12
Á3 (r1)Á4 (r2)dr1dr2

Constraints:

• We need to use Fortran

• A large number of points will be computed ()
Simple solution:

• Compute the sum over a fixed number of grid points per CPU

• Use the Message Passing Interface (MPI) to communicate

84

Simple partition:

1 2 3 4

85

Better load balancing:

1 2 3 4

86

Message Passing Interface
MPI is a standard Application Programming Interface (API) which specifies how
processes can communicate together.

• Each process has a rank and belongs to a group of processes.

• Processes can do point-to-point or collective communications
There is no need to pass the IP address and port number. All low-level
communication is handled.

MPI programs start with a call to the MPI_Init function

! Fortran
integer :: ierr
call MPI_Init(ierr)

// C
#include <mpi.h>
int MPI_Init(int *argc, char ***argv)

87

// C++
#include <mpi.h>
void MPI::Init(int& argc, char**& argv)
void MPI::Init()

MPI programs end with a call to the MPI_Finalize function

integer :: ierr
call MPI_Finalize(ierr)

The rank of the current process is obtained with

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

and the total number of processes is obtained with

call MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

88

Synchronization
call MPI_BARRIER(MPI_COMM_WORLD,ierr)

All the processes are blocked until they are all at this point. They wait for each
other.

Point-to-point send/receive operation
include ’mpif.h’
<type> :: BUF(*)
integer :: n, datatype, tag, comm, ierr
integer :: status(MPI_STATUS_SIZE)
integer :: sender, receiver

if (my_id == sender) then
 call MPI_SEND(buffer, n, datatype, receiver, tag, comm, ierr)
else if (my_id == receiver) then
 call MPI_RECV(buffer, n, datatype, sender, tag, comm, status, ierr)
endif

89

• sender : Rank of the process sending the data

• receiver : Rank of the process receiving the data

• <type> : Type of data (double precision, integer, etc)

• buffer : array of type <type>

• n : number of elements to send

• datatype : MPI type of data (MPI_DOUBLE_PRECISION, MPI_INTEGER4,
etc)

• tag : Message tag. Used to identify the message.

• comm : Communicator. Usually MPI_COMM_WORLD

• ierr : if ierr == MPI_SUCCESS, everything went fine

• status : Contains some information about the incoming message to track
failures

Collective communications
Broadcast : one-to-all communication. Send the same data to all processes.

90

include ’mpif.h’
<type> :: buffer(*)
integer :: n, datatype, sender, comm, ierr
call MPI_BCAST(buffer, n, datatype, sender, comm, ierr)

• buffer : Data to send to all processes

• n : Number of elements in buffer
Reductions: all-to-one communication.

include ’mpif.h’
<type> :: sendbuf(*), recvbuf(*)
integer :: n, datatype, op, sender, comm, ierr
call MPI_REDUCE(sendbuf, recvbuf, n, datatype, op, sender, comm, ierr)

• sendbuf : Buffer of data to send

• recvbuf : Buffer in which the data will be received

• op : Reduction operation to perform. Examples: MPI_SUM, MPI_MAX,
MPI_PROD, etc

91

The all-to-all variant is MPI_ALLREDUCE.

MPI has lots of routines, have a look a the documentation.

92

Two-electron integral using MPI
Pseudo-code

function f(r1,r2) {
 ...
}

MPI_Init()
myid := MPI_COMM_RANK(MPI_COMM_WORLD)
nproc := MPI_COMM_SIZE(MPI_COMM_WORLD)

dx := (xmax-xmin)/(nmax-1)
dv := dx^6

local_result := 0.
// For 4 processors,
// Processor 0 runs over 1,5,9 ,13,...
// Processor 1 runs over 2,6,10,14,...

93

// Processor 2 runs over 3,7,11,15,...
// Processor 3 runs over 4,8,12,16,...
for i = myid+1 to nmax with a step of nproc {
 for j,k,l,m,n = 1 to nmax {
 r1(1) := (i-1) * dx + xmin
 r1(2) := (j-1) * dx + xmin
 r1(3) := (k-1) * dx + xmin
 r2(1) := (l-1) * dx + xmin + dx/2
 r2(2) := (m-1) * dx + xmin + dx/2
 r2(3) := (n-1) * dx + xmin + dx/2
 // (+ dx/2 : Avoids divergence in 1/r12)

 local_result := local_result + f(r1,r2) * dv
 }
}

result := MPI_REDUCE(local_result, MPI_SUM, MPI_COMM_WORLD)

94

if (myid = 0) {
 print result
}

MPI_Finalize()

Fortran implementation

double precision function f(r1,r2)
 implicit none
 double precision, intent(in) :: r1(3), r2(3)

 ! < Phi_1 (r1) Phi_2 (r1) 1/r12 Phi_3 (r2) Phi_4 (r2) >

 double precision :: Phi_1, Phi_2, Phi_3, Phi_4
 double precision :: r12_inv

 double precision,parameter :: alpha_1=1.d0 , alpha_3=1.5d0
 double precision,parameter :: alpha_2=4.2d0, alpha_4=2.3d0

95

 double precision,parameter :: X_1(3)=(/ 0.d0, 0.d0, 0.d0 /)
 double precision,parameter :: X_2(3)=(/ 0.d0, 1.d0, 0.d0 /)
 double precision,parameter :: X_3(3)=(/ 0.d0, 1.d0, 1.d0 /)
 double precision,parameter :: X_4(3)=(/ 1.d0, 1.d0, 0.d0 /)

 Phi_1 = exp (-alpha_1*((r1(1)-X_1(1))*(r1(1)-X_1(1)) + &
 (r1(2)-X_1(2))*(r1(2)-X_1(2)) + &
 (r1(3)-X_1(3))*(r1(3)-X_1(3))))

 Phi_2 = exp (-alpha_2*((r2(1)-X_2(1))*(r2(1)-X_2(1)) + &
 (r2(2)-X_2(2))*(r2(2)-X_2(2)) + &
 (r2(3)-X_2(3))*(r2(3)-X_2(3))))

 Phi_3 = exp (-alpha_3*((r1(1)-X_3(1))*(r1(1)-X_3(1)) + &
 (r1(2)-X_3(2))*(r1(2)-X_3(2)) + &
 (r1(3)-X_3(3))*(r1(3)-X_3(3))))

96

 Phi_4 = exp (-alpha_4*((r2(1)-X_4(1))*(r2(1)-X_4(1)) + &
 (r2(2)-X_4(2))*(r2(2)-X_4(2)) + &
 (r2(3)-X_4(3))*(r2(3)-X_4(3))))

 r12_inv = 1.d0/dsqrt ((r1(1)-r2(1))*(r1(1)-r2(1)) + &
 (r1(2)-r2(2))*(r1(2)-r2(2)) + &
 (r1(3)-r2(3))*(r1(3)-r2(3)))

 f = Phi_1 * Phi_2 * r12_inv * Phi_3 * Phi_4
end

program bielec

 implicit none
 include 'mpif.h'

 integer :: ierr
 integer :: myid

97

 integer :: nproc

 integer :: i,j,k,l,m,n
 integer, parameter :: nmax=30
 double precision, parameter :: xmin = -2.d0, xmax = 2.d0

 double precision, external :: f
 double precision :: r1(3), r2(3)
 double precision :: local_result, result
 double precision :: dx,dv

 ! Initialize the MPI library
 call MPI_Init(ierr)

 ! Get the rank of the current process
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

 ! Get the the total number of processes

98

 call MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

 ! Compute a partial result locally
 local_result = 0.d0
 dx = (xmax-xmin)/dble(nmax-1)
 dv = dx**6

 ! For 4 processes,
 ! Proces 0 runs over 1,5,9 ,13,...
 ! Proces 1 runs over 2,6,10,14,...
 ! Proces 2 runs over 3,7,11,15,...
 ! Proces 3 runs over 4,8,12,16,...
 do i=myid+1,nmax,nproc
 r1(1) = dble(i-1) * dx + xmin
 do j=1,nmax
 r1(2) = dble(j-1) * dx + xmin
 do k=1,nmax
 r1(3) = dble(k-1) * dx + xmin

99

 do l=1,nmax
 r2(1) = dble(l-1) * dx + xmin + dx/2
 ! + dx/2 : Avoids divergence in r1=r2
 do m=1,nmax
 r2(2) = dble(m-1) * dx + xmin + dx/2
 do n=1,nmax
 r2(3) = dble(n-1) * dx + xmin + dx/2
 local_result = local_result + f(r1,r2) * dv
 enddo
 enddo
 enddo
 enddo
 enddo
 enddo

 ! Sum the local results of all processes
 ! into the master process
 call MPI_REDUCE(local_result, result, 1, &

100

 MPI_DOUBLE_PRECISION, MPI_SUM, &
 0, MPI_COMM_WORLD, ierr)

 if (myid == 0) then
 print *, result
 endif

 ! Terminate the MPI library
 call MPI_Finalize(ierr)

end

Links
• Open MPI : Open source MPI implementation : http://www.open-mpi.org/

• Open MPI documentation : http://www.open-mpi.org/doc/v1.8/

101

http://www.open-mpi.org/
http://www.open-mpi.org/doc/v1.8/

Coarray Fortran (CAF)
Extension of the Fortran 2008 standard.

• Each running process is called an image.

• The number of images is obtained with the built-in num_image() function

• The rank of the current process is obtained with this_image()
A codimension can be given to arrays in square brackets, for example:

integer :: i[*]
double precision :: A(10)[*]

For any image,

• i[2] : value of i in image number 2

• A(5)[4] : value of A(5) in image number 4
Any image can directly have access an element in the memory of another image.

PGAS : Partitioned Global Address Space.

102

Much simpler than MPI:

• Higher level of abstraction than MPI

• Types, message sizes, tags, etc are known by the compiler

• Compiler can place the communication instructions where it is the best
(asynchronous comm)

• Better performance obtained by non-experts
But:

• Experts can get more performance with MPI : more flexibility (lower level)

• Having knowledge of how MPI works helps to write efficient (CAF) code

103

Calculation of the 2-electron integral
double precision function f(r1,r2)
 implicit none
 double precision, intent(in) :: r1(3), r2(3)

 ! < Phi_1 (r1) Phi_2 (r1) 1/r12 Phi_3 (r2) Phi_4 (r2) >

 double precision :: Phi_1, Phi_2, Phi_3, Phi_4
 double precision :: r12_inv

 double precision,parameter :: alpha_1=1.d0 , alpha_3=1.5d0
 double precision,parameter :: alpha_2=4.2d0, alpha_4=2.3d0

 double precision,parameter :: X_1(3)=(/ 0.d0, 0.d0, 0.d0 /)
 double precision,parameter :: X_2(3)=(/ 0.d0, 1.d0, 0.d0 /)
 double precision,parameter :: X_3(3)=(/ 0.d0, 1.d0, 1.d0 /)
 double precision,parameter :: X_4(3)=(/ 1.d0, 1.d0, 0.d0 /)

104

 Phi_1 = exp (-alpha_1*((r1(1)-X_1(1))*(r1(1)-X_1(1)) + &
 (r1(2)-X_1(2))*(r1(2)-X_1(2)) + &
 (r1(3)-X_1(3))*(r1(3)-X_1(3))))

 Phi_2 = exp (-alpha_2*((r2(1)-X_2(1))*(r2(1)-X_2(1)) + &
 (r2(2)-X_2(2))*(r2(2)-X_2(2)) + &
 (r2(3)-X_2(3))*(r2(3)-X_2(3))))

 Phi_3 = exp (-alpha_3*((r1(1)-X_3(1))*(r1(1)-X_3(1)) + &
 (r1(2)-X_3(2))*(r1(2)-X_3(2)) + &
 (r1(3)-X_3(3))*(r1(3)-X_3(3))))

 Phi_4 = exp (-alpha_4*((r2(1)-X_4(1))*(r2(1)-X_4(1)) + &
 (r2(2)-X_4(2))*(r2(2)-X_4(2)) + &
 (r2(3)-X_4(3))*(r2(3)-X_4(3))))

 r12_inv = 1.d0/dsqrt ((r1(1)-r2(1))*(r1(1)-r2(1)) + &

105

 (r1(2)-r2(2))*(r1(2)-r2(2)) + &
 (r1(3)-r2(3))*(r1(3)-r2(3)))

 f = Phi_1 * Phi_2 * r12_inv * Phi_3 * Phi_4
end

program bielec

 implicit none

 integer :: i,j,k,l,m,n
 integer, parameter :: nmax=30
 double precision, parameter :: xmin = -2.d0, xmax = 2.d0

 double precision, external :: f
 double precision :: r1(3), r2(3)
 double precision :: local_result[*], result
 double precision :: dx,dv

106

 ! Compute a partial result locally
 local_result = 0.d0
 dx = (xmax-xmin)/dble(nmax-1)
 dv = dx**6

 ! Image 0 runs over 1,5,9 ,13,...
 ! Image 1 runs over 2,6,10,14,...
 ! Image 2 runs over 3,7,11,15,...
 ! Image 3 runs over 4,8,12,16,...
 do i=this_image()+1,nmax,num_images()
 r1(1) = dble(i-1) * dx + xmin
 do j=1,nmax
 r1(2) = dble(j-1) * dx + xmin
 do k=1,nmax
 r1(3) = dble(k-1) * dx + xmin
 do l=1,nmax
 r2(1) = dble(l-1) * dx + xmin + dx/2

107

 ! + dx/2 : Avoids divergence in r1=r2
 do m=1,nmax
 r2(2) = dble(m-1) * dx + xmin + dx/2
 do n=1,nmax
 r2(3) = dble(n-1) * dx + xmin + dx/2
 local_result = local_result + f(r1,r2) * dv
 enddo
 enddo
 enddo
 enddo
 enddo
 enddo

 ! Sum the local results of all processes
 do i=1,num_images()
 result = result + local_result[i]
 enddo

108

 if (this_image() == 1) then
 print *, result
 endif

end

Links
• Coarray Fortran http://www.co-array.org/

• Rice University http://caf.rice.edu/

• Coarray with gfortran http://gcc.gnu.org/wiki/Coarray

109

http://www.co-array.org/
http://caf.rice.edu/
http://gcc.gnu.org/wiki/Coarray

Problem 4: Parallelization of a matrix
product
Matrix products are usually not written by the user. It is preferable to use
optimized libraries to perform linear algebra. A standardized API exists (Lapack)
on top of the BLAS API. Every CPU manufacturer provides optimized libraries
(MKL, ATLAS, NAG, ACML, CULA, etc).

For matrix products, we use DGEMM:

• D : double precision

• Ge : General

• MM : Matrix Multiplication

NAME
 DGEMM - perform one of the matrix-matrix operations
 C := alpha*op(A)*op(B) + beta*C

110

 SYNOPSIS
 SUBROUTINE DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA,
 B, LDB, BETA, C, LDC)

 CHARACTER*1 TRANSA, TRANSB
 INTEGER M, N, K, LDA, LDB, LDC
 DOUBLE PRECISION ALPHA, BETA
 DOUBLE PRECISION A(LDA, *), B(LDB, *), C(LDC,*)
 ...

Cij=

NX

k=1
AikBkj

C = 0.
do j=1,N
 do i=1,N
 do k=1,N
 C(i,j) = C(i,j) + A(i,k) * B(k,j)
 end do

111

 end do
end do

The final matrix can be split, such that each CPU core builds part of it.

112

113

C11 =A11 ¢B11 +A12 ¢B21
C12 =A11 ¢B12 +A12 ¢B22
C21 =A21 ¢B11 +A22 ¢B21
C22 =A21 ¢B12 +A22 ¢B22

The large N x N matrix product can be performed by doing 8 smaller matrix
products of size N/2 x N/2, that can be done simultaneously by 8 CPUs.

114

Data access is slow with respect to calculation:

Operation Latency (ns)

Int ADD 0.3

FP ADD 0.9

FP MUL 1.5

L1 cache 1.2

L2 cache 3.5

L3 cache 13

RAM 79

Infiniband 1 200

Ethernet 50 000

Disk (SSD) 50 000

Disk (15k) 2 000 000

Arithmetic intensity : Flops/memory access

115

Sequential algorithm:

• The most efficient operation on a computer : ~95% of the peak performance

• data access and flops -> High arithmetic intensity -> Compute
bound.

• (2 x N²) data reads, (N) data writes and (N³) flops

• Arithmetic intensity = N/2
4-way parallel algorithm:

• Here, the data can not be disjoint between the CPUs

• To build one block, 4 blocks are needed

• The same block will be read by different CPUs

• (2 x N x N/2) data reads, (N/2 x N/2 x N) flops

• Arithmetic intensity = N/4 : less than sequential algorithm
Difficulty:

• A modern CPU can perform 8 FP ADD and 8 FP MUL per cycle (!!!)

• A random memory access takes ~300 cycles (4 800 flops!)

116

• A network access takes ~4000 cycles (64 000 flops!)

• To benefit from distributed parallelism, the matrices have to be very large
Proposed solution: Use shared-memory parallelism

• Avoids network bottleneck (~10x slower than RAM)

• L3 cache sharing optimizes data access (~6x faster than RAM)

• Hardware memory prefetchers will mask the RAM latencies

117

Threads

pthreads
• When starting a new thread, a concurrent execution of a function is started in
the same memory domain.

• A private memory domain is created for the thread

• The parent process can wait until all the children threads have finished their
work

• Fork/join model
Example in pseudo-code

function f() { ... }

t = pthread_create(f);

Example in Python

118

#!/usr/bin/env python

import threading
import time

A = 0

def f(x):
 global A
 time.sleep(1.)
 A = x
 print x, "written by thread"

def main():
 t = threading.Thread(target=f, args = [2])
 print "Before thread starts, A= ", A
 t.start()
 time.sleep(0.5)

119

 print "A= ", A
 time.sleep(1.)
 print "A= ", A
 time.sleep(1.)
 t.join()
 print "After join, A=", A

if __name__ == '__main__':
 main()

What happens when 2 threads read from the same memory address at the
same time?

Nothing special
What happens when 2 threads write at the same memory address at the
same time?

If you are lucky, the program crashes. Otherwise, it is unpredictible.

120

Locks
To avoid writing simultaneously at the same memory location, we introduce
Locks:
acquire_lock(L)

if L is free, the current thread gets the lock. Otherwise, block until the lock can
be acquired

release_lock(L)
the lock is released by the current thread

Example of wrong code

#!/usr/bin/env python
import threading
import time

A = 0

def f(x):

121

 global A
 for i in range(x):
 A = A+1

def main():
 t = [None for i in range(10)]
 for i in range(10):
 t[i] = threading.Thread(target=f, args = [100000])
 for i in range(10):
 t[i].start()

 for i in range(10):
 t[i].join()
 print A

if __name__ == '__main__':
 main()

Using a lock:

122

#!/usr/bin/env python
import threading
import time

A = 0
lock = threading.Lock()

def f(x):
 global A
 a = 0
 for i in range(x):
 a = a+1
 lock.acquire()
 A = A+a
 lock.release()

def main():
 t = [None for i in range(10)]

123

 for i in range(10):
 t[i] = threading.Thread(target=f, args = [100000])
 for i in range(10):
 t[i].start()

 for i in range(10):
 t[i].join()
 print A

if __name__ == '__main__':
 main()

A semaphore is more general than a lock : it can be taken simultaneously by
more than 1 thread.

124

OpenMP
OpenMP is an extension of programming languages that enable the use of
multi-threading to parallelize the code using directives given as comments. The
same source code can be compiled with/without OpenMP.

For example:

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i)
!$OMP DO
do i=1,n
 A(i) = B(i) + C(i)
end do
!$OMP END DO
!$OMP END PARALLEL

• !$OMP PARALLEL starts a new multi-threaded section. Everything inside this
block is executed by all the threads

125

• !$OMP DO tells the compiler to split the loop among the different threads (by
changing the loop boundaries for instance)

• !$OMP END DO marks the end of the parallel loop. It contains an implicit
synchronization. After this line, all the threads have finished executing the
loop.

• !$OMP END PARALLEL marks the end of the parallel section. Contains also
an implicit barrier.

• DEFAULT(SHARED) : all the variables (A,B,C) are in shared memory by
default

• PRIVATE(i) : the variable i is private to every thread
Other important directives:

• !$OMP CRITICAL ... !$OMP END CRITICAL : all the statements in this block
are protected by a lock

• !$OMP TASK ... !$OMP END TASK : define a new task to execute

• !$OMP BARRIER : synchronization barrier

126

• !$OMP SINGLE ... !$OMP END SINGLE : all the statements in this block are
executed by a single thread

• !$OMP MASTER ... !$OMP END MASTER : all the statements in this block are
executed by the master thread

• omp_get_thread_num() : returns the ID of the current running thread

• omp_get_num_threads() : returns the total number of running threads

• OMP_NUM_THREADS : Environment variable (shell) that fixes the number of
threads to run

127

Matrix product : simple OpenMP example

Loop parallelism
A = create_matrix()
B = create_matrix()

// parallelize loop over i and j
for i=1 to N using a step of N/2 {
 for j=1 to N using a step of N/2 {
 for k=1 to N using a step of N/2 {
 // C_ij = A_ik.B_kj
 DGEMM (C(i,j), A(i,k), B(k,j), (N/2, N/2))
 }
 }
}

128

program submatrix_openmp
 implicit none
 integer, parameter :: sze = 5000
 double precision, allocatable, dimension (:,:) :: A, B, C
 double precision :: cpu_0, cpu_1

 integer :: istart(2), iend(2)
 integer :: jstart(2), jend(2)
 integer :: i,j

 integer :: i1,i2,j1,j2,step
 integer, external :: omp_get_thread_num
 double precision :: s

 allocate (A(sze,sze), B(sze,sze), C(sze,sze))

 C = 0.d0
 step = sze/2

129

 !$OMP PARALLEL DEFAULT(NONE) &
 !$OMP PRIVATE(i1,j1,j2,istart,jstart,iend,jend, &
 !$OMP cpu_0,cpu_1) &
 !$OMP SHARED(A,B,C,step)

 !$OMP MASTER
 call wall_time(cpu_0)
 !$OMP END MASTER

 !Build the submatrices

 !$OMP DO COLLAPSE(2)
 do i1=1,sze,step
 do j2=1,sze,step
 istart(1) = i1
 iend(1) = istart(1)+step-1
 jstart(1) = j2

130

 jend(1) = jstart(1)+step-1
 call create_matrix(A,sze,7.d0,istart(1), &
 iend(1),jstart(1),jend(1))
 call create_matrix(B,sze,11.d0,istart(1), &
 iend(1),jstart(1),jend(1))
 enddo
 enddo
 !$OMP END DO

 !$OMP MASTER
 call wall_time(cpu_1)
 write(0,*) 'Matrix build time : ', cpu_1-cpu_0, 's'
 call wall_time(cpu_0)
 !$OMP END MASTER

 !$OMP DO COLLAPSE(2)
 do i1=1,sze,step
 do j2=1,sze,step

131

 istart(1) = i1
 jstart(2) = j2
 iend(1) = istart(1)+step-1
 jend(2) = jstart(2)+step-1
 do j1=1,sze,step
 jstart(1) = j1
 istart(2) = j1
 jend(1) = jstart(1)+step-1
 iend(2) = istart(2)+step-1

 ! Compute the submatrix product
 call dgemm('N','N', &
 1+iend(1)-istart(1), &
 1+jend(1)-jstart(1), &
 1+jend(2)-jstart(2), &
 1.d0, A(istart(1),jstart(1)),sze, &
 B(istart(2),jstart(2)),sze, &
 1.d0, C(istart(1),jstart(2)),sze)

132

 enddo
 enddo
 enddo
 !$OMP END DO
 !$OMP MASTER
 call wall_time(cpu_1)
 write(0,*) 'Compute Time : ', cpu_1-cpu_0, 's'
 !$OMP END MASTER

 !$OMP END PARALLEL

 ! Print the sum of the elements
 s = 0.d0
 do j=1,sze
 do i=1,sze
 s = s+C(i,j)
 enddo
 enddo

133

 deallocate (A,B,C)
 print *, s
end

134

Task parallelism
Shared-memory work stealing

A = create_matrix()
B = create_matrix()

queue= []

for i=1 to N using a step of N/2 {
 for j=1 to N using a step of N/2 {
 for k=1 to N using a step of N/2 {
 // C_ij = A_ik.B_kj
 queue = queue + [(i, j, k)]
 }
 }
}

sem = semaphore(nproc)

135

function do_work(i,j,k) {
 DGEMM (A,B,C,i,j,k)
 release_semaphore(sem)
}

do while queue is not empty
{
 acquire_semaphore(sem)
 // Pop out the 1st element of the queue
 params = queue.pop()
 pthread_create(do_work, params)
}

program submatrix_openmp
 implicit none
 integer, parameter :: sze = 5000
 double precision, allocatable, dimension (:,:) :: A, B, C

136

 double precision :: wall_0, wall_1

 integer :: istart(2), iend(2)
 integer :: jstart(2), jend(2)
 integer :: i,j

 integer :: i1,i2,j1,j2,step

 double precision :: s

 allocate (A(sze,sze), B(sze,sze), C(sze,sze))

 C = 0.d0
 step = sze/2

 !$OMP PARALLEL DEFAULT(NONE) &
 !$OMP PRIVATE(i1,j1,j2,istart,jstart,iend,jend) &
 !$OMP SHARED(A,B,C,step,wall_0,wall_1)

137

 !$OMP MASTER
 call wall_time(wall_0)
 !Build the submatrices
 do i1=1,sze,step
 do j2=1,sze,step
 istart(1) = i1
 iend(1) = istart(1)+step-1
 jstart(1) = j2
 jend(1) = jstart(1)+step-1
 !$OMP TASK
 call create_matrix(A,sze,7.d0,istart(1), &
 iend(1),jstart(1),jend(1))
 !$OMP END TASK
 !$OMP TASK
 call create_matrix(B,sze,11.d0,istart(1), &
 iend(1),jstart(1),jend(1))
 !$OMP END TASK

138

 enddo
 enddo
 !$OMP END MASTER

 !$OMP TASKWAIT

 !$OMP MASTER
 call wall_time(wall_1)
 write(0,*) 'Matrix build time : ', wall_1-wall_0, 's'
 call wall_time(wall_0)
 do i1=1,sze,step
 do j2=1,sze,step
 istart(1) = i1
 jstart(2) = j2
 iend(1) = istart(1)+step-1
 jend(2) = jstart(2)+step-1
 do j1=1,sze,step
 jstart(1) = j1

139

 istart(2) = j1
 jend(1) = jstart(1)+step-1
 iend(2) = istart(2)+step-1

 ! Compute the submatrix product
 !$OMP TASK
 call dgemm('N','N', &
 1+iend(1)-istart(1), &
 1+jend(1)-jstart(1), &
 1+jend(2)-jstart(2), &
 1.d0, A(istart(1),jstart(1)),sze, &
 B(istart(2),jstart(2)),sze, &
 1.d0, C(istart(1),jstart(2)),sze)
 !$OMP END TASK
 enddo
 enddo
 enddo
 !$OMP END MASTER

140

 !$OMP TASKWAIT

 !$OMP END PARALLEL
 call wall_time(wall_1)
 write(0,*) 'Compute Time : ', wall_1-wall_0, 's'

 ! Print the sum of the elements
 s = 0.d0
 do j=1,sze
 do i=1,sze
 s = s+C(i,j)
 enddo
 enddo
 deallocate (A,B,C)
 print *, s
end

141

Divide and Conquer algorithms
Algorithm based on recursion. The problem is divided in sub-problems that are
solved in the same way as the large problem.

Example : Sum
Suppose you want to compute the sum of all the elements of the array A(1:16).
This sum can be expressed as the sum of the two halves of the array :

S[A(1:16)] = S[A(1:8)] + S[A(9:16)]

The S function will be applied recursively.

142

Python

#!/usr/bin/python

sze_A = 5000000
A = [i*1.5 for i in range(sze_A)]

def sum_half(X):
 sze = len(X)

143

 if sze > 1 :
 return sum_half(X[:sze/2]) + sum_half(X[sze/2:])
 else:
 return X[0]

s = sum_half(A)
print 'DC : ', s
print 'Exact : 1.875000375E+13'

Fortran OpenMP

program dc
 implicit none
 real, allocatable :: A(:)
 integer, parameter :: sze = 5000000
 real :: s
 integer :: i

 allocate (A(sze))

144

 ! Initialize array
 do i=1,sze
 A(i) = dble(i)*1.5
 enddo

 !$OMP PARALLEL DEFAULT(NONE) SHARED(A,s)

 !$OMP SINGLE
 call sum_half(A(1), sze, s)
 !$OMP END SINGLE

 !$OMP TASKWAIT
 !$OMP END PARALLEL
 print *, 'Loop : ', sum(A)
 print *, 'DC : ', s
 print *, 'Exact : 1.875000375E+13'

145

end

recursive subroutine sum_half(A,sze,s)
 implicit none

 integer, intent(in) :: sze
 real, intent(in) :: A(sze)
 real, intent(out) :: s

 real :: sa, sb
 integer :: i, sze_new

 if (sze > 1) then
 sze_new = sze/2

 !$OMP TASK SHARED(A,sa) FIRSTPRIVATE(sze_new)
 call sum_half(A(1), sze_new, sa)
 !$OMP END TASK

146

 !$OMP TASK SHARED(A,sb) FIRSTPRIVATE(sze_new,sze)
 call sum_half(A(sze_new+1), sze-sze_new, sb)
 !$OMP END TASK

 !$OMP TASKWAIT
 s = sa+sb

 else
 s = A(1)
 endif

end

Divide and Conquer matrix product
Pseudo-code

147

recursive subroutine divideAndConquer(A,B,C,sze,ie1,je2)

 if ((ie1 < 200).and.(je2 < 200)) then
 call DGEMM
 else

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)
 call divideAndConquer(& ! +-------+ +---+---+ +---+---+
 A(1,1), & ! | X | | | | | X | |
 B(1,1), & ! +-------+ . + X | + = +---+---+
 C(1,1), & ! | | | | | | | |
 sze, & ! +-------+ +---+---+ +---+---+
 ie1/2, & ! A B C
 je2/2)

 !$OMP END TASK

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)

148

 call divideAndConquer(& ! +-------+ +---+---+ +---+---+
 A(1,1), & ! | X | | | | | | X |
 B(1,1+je2/2), & ! +-------+ . | | X | = +---+---+
 C(1,1+je2/2), & ! | | | | | | | |
 sze, & ! +-------+ +---+---+ +---+---+
 ie1/2, & ! A B C
 je2-(je2/2))
 !$OMP END TASK

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)
 call divideAndConquer(& ! +-------+ +---+---+ +---+---+
 A(1+ie1/2,1), & ! | | | | | | | |
 B(1,1), & ! +-------+ . | X | | = +---+---+
 C(1+ie1/2,1), & ! | X | | | | | X | |
 sze, & ! +-------+ +---+---+ +---+---+
 ie1-(ie1/2), & ! A B C
 je2/2)
 !$OMP END TASK

149

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)
 call divideAndConquer(& ! +-------+ +---+---+ +---+---+
 A(1+ie1/2,1), & ! | | | | | | | |
 B(1,1+je2/2), & ! +-------+ . | | X | = +---+---+
 C(1+ie1/2,1+je2/2),& ! | X | | | | | | X |
 sze, & ! +-------+ +---+---+ +---+---+
 ie1-(ie1/2), & ! A B C
 je2-(je2/2))

 !$OMP END TASK
 !$OMP TASKWAIT

 endif

end

!$OMP PARALLEL DEFAULT(SHARED)

150

 !$OMP SINGLE
 call divideAndConquer(A,B,C,sze, sze, sze)
 !$OMP END SINGLE NOWAIT
 !$OMP TASKWAIT
!$OMP END PARALLEL

Fortran implementation

program submatrix_dc
 implicit none
 double precision, allocatable, dimension (:,:) :: A, B, C
 integer :: istart(2), iend(2)
 integer :: jstart(2), jend(2)
 integer, parameter :: sze = 5000
 double precision :: wall_0, wall_1
 double precision :: s
 integer :: i1,j1,i2,j2, i,j, step

 allocate (A(sze,sze), B(sze,sze), C(sze,sze))

151

 call wall_time(wall_0)
 C = 0.d0
 step = sze/2

 call wall_time(wall_0)

 !$OMP PARALLEL DEFAULT(NONE) &
 !$OMP PRIVATE(i1,j1,j2,istart,jstart,iend,jend) &
 !$OMP SHARED(A,B,C,step)

 !$OMP SINGLE
 !Build the submatrices
 do i1=1,sze,step
 do j2=1,sze,step
 istart(1) = i1
 iend(1) = istart(1)+step-1
 jstart(1) = j2

152

 jend(1) = jstart(1)+step-1
 !$OMP TASK SHARED(A)
 call create_matrix(A,sze,7.d0,istart(1), &
 iend(1),jstart(1),jend(1))
 !$OMP END TASK
 !$OMP TASK SHARED(B)
 call create_matrix(B,sze,11.d0,istart(1), &
 iend(1),jstart(1),jend(1))
 !$OMP END TASK
 enddo
 enddo
 !$OMP END SINGLE NOWAIT

 !$OMP TASKWAIT
 !$OMP END PARALLEL

 call wall_time(wall_1)
 write(0,*) 'Matrix build time : ', wall_1-wall_0, 's'

153

 call wall_time(wall_0)
 !$OMP PARALLEL DEFAULT(SHARED)
 !$OMP SINGLE
 call divideAndConquer(A,B,C,sze, sze, sze)
 !$OMP END SINGLE NOWAIT
 !$OMP TASKWAIT
 !$OMP END PARALLEL

 call wall_time(wall_1)
 write(0,*) 'Compute Time : ', wall_1-wall_0, 's'

 ! Print the sum of the elements
 s = 0.d0
 do j=1,sze
 do i=1,sze
 s = s+C(i,j)
 enddo
 enddo

154

 deallocate (A,B,C)
 print *, s

end

recursive subroutine divideAndConquer(A,B,C,sze,ie1,je2)
 implicit none
 double precision :: wall_0, wall_1

 integer, intent(in) :: sze
 double precision, dimension (sze,sze), intent(in) :: A, B
 double precision, dimension (sze,sze), intent(out) :: C
 integer, intent(in) :: ie1,je2

 if ((ie1 < 200).and.(je2 < 200)) then
 call dgemm('N','N', &
 ie1, &
 je2, &

155

 sze, &
 1.d0, A,sze, &
 B,sze, &
 1.d0, C,sze)
 else

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)
 call divideAndConquer(&
 A(1,1), &
 B(1,1), &
 C(1,1), &
 sze, &
 ie1/2, &
 je2/2)

 !$OMP END TASK

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)

156

 call divideAndConquer(&
 A(1,1), &
 B(1,1+je2/2), &
 C(1,1+je2/2), &
 sze, &
 ie1/2, &
 je2-(je2/2))
 !$OMP END TASK

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)
 call divideAndConquer(&
 A(1+ie1/2,1), &
 B(1,1), &
 C(1+ie1/2,1), &
 sze, &
 ie1-(ie1/2), &
 je2/2)
 !$OMP END TASK

157

 !$OMP TASK SHARED(A,B,C,sze) FIRSTPRIVATE(ie1,je2)
 call divideAndConquer(&
 A(1+ie1/2,1), &
 B(1,1+je2/2), &
 C(1+ie1/2,1+je2/2), &
 sze, &
 ie1-(ie1/2), &
 je2-(je2/2))

 !$OMP END TASK
 !$OMP TASKWAIT

 endif

end

158

Vectorization
Parallelism that happens on a single CPU core.

SIMD : Single Instruction, Multiple Data

Execute the same instruction in parallel on all the elements of a vector:

Example : AVX vector ADD in double precision:

Different instruction sets exist in the x86 micro-architecture:

• MMX : Integer (64-bit wide)

• SSE -> SSE4.2 : Integer and Floating-point (128-bit)

159

• AVX : Integer and Floating-point (256-bit)

• AVX-512 : Integer and Floating-point (512-bit)
Requirements:

1. The elements of each SIMD vector must be contiguous in memory

2. The first element of each SIMD vector must be aligned on a proper boundary
(64, 128, 256 or 512-bit).

Automatic vectorization
The compiler can generate automatically vector instructions when possible. A
double precision AVX auto-vectorized loop generates 3 loops:
Peel loop (scalar)

First elements until the 256-bit boundary is met
Vector loop

Vectorized version until the last vector of 4 elements
Tail loop (scalar)

Last elements

160

161

Intel specific Compiler directives
To remove the peel loop, you can tell the compiler to align the arrays on a 32 byte
boundary using:

double precision, allocatable :: A(:), B(:)
!DIR$ ATTRIBUTES ALIGN : 32 :: A, B

Then, before using the arrays in a loop, you can tell the compiler that the arrays
are aligned. Be careful: if one array is not aligned, this may cause a segmentation
fault.

!DIR$ VECTOR ALIGNED
do i=1,n
 A(i) = A(i) + B(i)
end do

To remove the tail loop, you can allocate A such that its dimension is a multiple of
4 elements:

162

n_4 = mod(n,4)
if (n_4 == 0) then
 n_4 = n
else
 n_4 = n - n_4 + 4
endif
allocate (A(n_4), B(n_4))

and rewrite the loop as follows:

do i=1,n,4
 !DIR$ VECTOR ALIGNED
 !DIR$ VECTOR ALWAYS
 do k=0,3
 A(i+k) = A(i+k) + B(i+k)
 end do
end do

163

In that case, the compiler knows that each inner-most loop cycle can be
transformed safely into only vector instructions, and it will not produce the tail and
peel loops with the branching. For small arrays, the gain can be significant.

For multi-dimensional arrays, if the 1st dimension is a multiple of 4 elements, all
the columns are aligned:

double precision, allocatable :: A(:,:)
!DIR$ ATTRIBUTES ALIGN : 32 :: A
allocate(A(n_4,m))
do j=1,m
 do i=1,n,4
 !DIR$ VECTOR ALIGNED
 !DIR$ VECTOR ALWAYS
 do k=0,3
 A(i+k,j) = A(i+k,j) * B(i+k,j)
 end do
 end do
end do

164

Warning

In practice, using multiples of 4 elements is not always the best choice. Using
multiples of 8 or 16 elements can be better because the inner-most loop may
be unrolled by the compiler to improve the efficiency of the pipeline.

165

Instruction-level parallelism (ILP)
MIMD : Multiple instruction, Multiple data

With ILP, different execution units are used in parallel. For example,
Sandy-Bridge (2011) x86 CPUs can perform simultaneously:

• 1 vector ADD

• 1 vector MUL

• 2 vector LOADs

• 1 vector STORE

• 1 integer ADD
Ideal for a scalar product (or a matrix product):

do i=1,N
 x = x + B(i)*C(i)
end do

166

Peak : 4 ADD + 4 MUL per cycle => 8 flops/cycle. For a 10-core CPU at 2.8GHz:
8 x 2.8E9 x 10 = 224 Gflops/s in double precision

Example:

do i=1,N
 A(i) = X(i) + Y(i)
end do

and

do i=1,N
 A(i) = 2.d0*(X(i) + Y(i))
end do

take the same amount of time.

Pipelining
Here we consider a typical RISC processor with 4 different stages to perform an
operation:

167

1. Instruction fetch

2. Instruction decode

3. Execution

4. Memory access+ write-back

Each stage can be executed using different physical units, such that all 4 units
can be kept busy:

168

169

In this example:
Latency

4 cycles. It takes 4 cycles to perform one single operation
Throughput

1 cycle. We get one result every cycle

Out of order execution
Inside the CPU, the instructions are not executed in the exact sequence of the
code, provided that it does not affect the result: independent instructions can be
executed in any order.

The CPU can choose an execution order that improves the efficiency of the
pipeline.

Branch prediction
When an if statement occurs, two paths can be taken by the program: it is a
branch.

The pipeline has to be filled differently depending on the branch.

170

Branch prediction: the CPU assumes that one branch is more likely to be chosen,
and fills the pipeline for it (speculative execution).

If the branch is mispredicted, the pipeline is emptied and the calculation is rolled
back.

Branch mispredictions can have a large penalty on the execution.

Many branch predictors exist:

• Static predictor : always assume the condition is true

• Saturating counter : 1. Strongly not taken 2. Weakly not taken 3. Weakly taken
4. Strongly taken

• Two-level adaptive predictor : a branch might be taken depending upon
whether the previous two were taken

• Local branch prediction : one history buffer (~4 bits) for each conditional

• Global branch prediction : keep a global history buffer for all branches

• Loop predictor

• etc...
Example:

171

do i=1,N
 if (mod(i,2) == 0) then
 ...
 else
 ...
 endif
end do

• Static : 50% success

• Saturating : 50% success

• Local : 100% success (history = 1010)

Links
• "Pipeline-base" by Hellisp - Own work. Licensed under Public domain via
Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Pipeline-base.png

172

http://commons.wikimedia.org/wiki/File:Pipeline-base.png

• "Pipeline, 4 stage" by en:User:Cburnett - Own workThis vector image was
created with Inkscape.. Licensed under Creative Commons Attribution-Share
Alike 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Pipeline,_4_stage.svg

173

Summary

• Multiple levels of parallelism : Coarse-grained -> Fine-grained

• Coarse-grained will give the highest level of parallel efficiency (lowest
Communication/Computation ratio)

• Different levels of parallelism can be combined

174

The tools you use should be adapted to your problem:

For example

• doing a Monte Carlo calculation using OpenMP is a bad choice:

• Shared memory is not required

• Communication is generally low

• Synchronization barriers can be avoided

• Scaling would be limited to the number of cores/node
• diagonalizing a matrix with XML-RPC would not give a good scaling:

• A lot of communication (matrix products)

• Synchronizations necessary
If you need to do a Monte Carlo calculation where every Monte Carlo step
diagonalizes a very large matrix, you can use OpenMP for the diagonalization
and XML-RPC for the distribution of the MC steps.

175

	Intro
	What is parallelism?
	Problem 1 : Potential energy surface
	GNU Parallel
	Convert thousands of images from .gif to .jpg

	Potential energy surface
	1. Fetch the energy in an output file
	2. Script that takes r1, r2 and angle as arguments
	3. Files containing arguments
	4. Run with GNU parallel

	Links

	Problem 2 : Computation of Pi
	Inter-process communication
	Processes vs threads
	Communication with named pipes
	Example

	Communication with unnamed pipes
	Example
	Computation of with pipes

	Sockets
	Computation of with sockets

	Remote procedure call (RPC)
	XML-RPC simple example
	Monte Carlo Calculation of with XML-RPC

	Problem 3 : Numerical computation of a 2-electron integral
	Message Passing Interface
	Synchronization
	Point-to-point send/receive operation
	Collective communications
	Two-electron integral using MPI
	Links

	Coarray Fortran (CAF)
	Calculation of the 2-electron integral
	Links

	Problem 4: Parallelization of a matrix product
	Threads
	pthreads
	Locks

	OpenMP
	Matrix product : simple OpenMP example
	Loop parallelism
	Task parallelism

	Divide and Conquer algorithms
	Example : Sum
	Divide and Conquer matrix product

	Vectorization
	Automatic vectorization
	Intel specific Compiler directives

	Instruction-level parallelism (ILP)
	Pipelining
	Out of order execution
	Branch prediction
	Links

	Summary

