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Abstracts

A few aspect of QMC for molecules

Michel Caffarel

(joint work with R. Assaraf, A. Khelif, A. Scemama, A. Ramı́rez-Soĺıs)

In this talk a number of recent works aimed at improving quantum Monte Carlo
(QMC) approaches for molecular structure are reported.

1. Improved one-particle properties

First, a recent proposal to greatly increase the efficiency of Monte Carlo calcu-
lations of one-body properties (e.g. charge and spin densities) is presented. The
general idea is to construct an “improved” estimator whose average is identical to
the desired average but with a much smaller variance.[1, 2, 3]

In the case of the charge density, ρ(r), the standard estimator has the following
form

(1) ρ(r) = 〈
N∑

i=1

δ(ri − r)〉Π

where N is the number of particles (here, electrons) and Π the underlying proba-
bility density sampled by Monte Carlo. Our proposed improved estimator is

(2) ρ(r) = −
1

4π

N∑

i=1

〈[
1

|ri − r|
− g]

∇2

i
(fΠ)

Π
〉Π,

where the two functions f and g play the role of auxiliary quantities. They are
introduced to decrease as much as possible the variance of the density estimator.
As with any optimization problem, there is no universal strategy for choosing f and
g. However, the guiding principle is to identify the leading sources of fluctuations
and, then, to adjust the auxiliary functions to remove most of them.

Let us emphasize that this approach is not limited to QMC calculations; our
estimator can be readily used in any type of Monte Carlo simulation (e.g. Monte
Carlo for classical thermodynamics). Furthermore and in sharp contrast with the
usual estimator based on the regularization of the delta-function on a grid, our
expression leads to accurate estimates of the density at any point in space, even
in the regions never visited during the Monte Carlo simulation (e.g., in the large-
distance regime). This property is particularly interesting when a global knowledge
of the density map is searched for.

Here, we present an application to the water dimer for which we have been able
to compute a smooth and accurate map of the charge density for a large number
of grid points (51x51x51=132651 points). Remark that such a calculation would
be vastly more difficult with the standard approach. Details of the method can be
found in Ref.[4].
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2. The fermion Monte Carlo method revisited

A second work presented here concerns a detailed mathematical study of a
recent proposal by Kalos et al.[6] -the Fermion Monte Carlo (FMC) method- to
solve the “Fermion-sign” problem. This problem is presently considered as one
of the most important challenge in computational physics. In short, the FMC
method is based on the use of two types of walkers simulating the positive and
negative parts of the signed wavefunction. The “positive” and “negative” walkers
are correlated so that to meet with a high probability and, whenever they meet,
a cancellation step is done. We have performed a careful mathematical analysis
of the various aspects of the method. We have shown that FMC is indeed exact.
However, the method is still unstable but with a weaker instability. We have proved

that the statistical error δE on the energy behaves as δE ∼ e
(EF−ẼB)N
√

N
where EF

is the fermi ground-state energy, EB the bose ground-state energy, and ẼB some
effective bose energy verifying EF ≥ ẼB > EB. Note that the exact QMC methods
proposed so far can be viewed as unstable approaches with ẼB = EB (no change
of the Bose state). To summarize, FMC is as an exact fermion method having an
attenuate exponential blow up of statistical fluctuations at large simulation times.
However, the pathological behavior of the error as a function of the number of
fermions (rapid increase of the Bose-Fermi gap) is still present. Details about this
study can be found in Ref.[5].

3. Fixed-node error in chemistry

A last work presented here concerns the role played by the “fixed-node” error in
the chemistry of real systems. It is usually said that the fixed-node approximation
is very good. For total energies it is certainly true since, in general, the fixed-node
error represents only a few percents of the total correlation energy (defined as
the difference between the exact and the Hartree-Fock energies), a result which
is considered as very good in computational chemistry. However, we emphasize
that such impressive result does not necessarily extend to the calculations of the
very small differences of energies involved in chemistry. In other words, the small
errors in total energies can lead to large uncontrolled errors in the very small
energy differences we are interested in. When computing differences of energies
with standard ab initio wavefunction-based and DFT methods a large cancellation
of sytematic errors is at work (use of a common basis set and common molecu-
lar orbitals not involved in the chemical process). This is not the case in QMC
simulations. Let us present two applications illustrating this important point.

A. Dissociation barrier of O4

We are interested in the process: O4 (singlet metastable state) ⇔ O4 [singlet
transition state (TS)] ⇔ 2 O2 (stable triplet state). Experimental results indicate
that the dissociation barrier associated with O4 ⇒ O4(TS) is probably greater
than 10 kcal. Sophisticated ab initio calculations [CCSD(T), ACPF, etc.] lead to
a barrier of about 8-9 kcal. Our fixed-Node DMC calculations give a barrier of
26.2 ± 2.9 kcal with SCF nodes, and 12.7 ± 3.7 kcal with MCSCF nodes. As seen,
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the value of the dissociation barrier is very dependent on the nature of the nodes
(“monoconfigurational” or “multiconfigurational”).

B. Fixed-Node DMC for Cr2.
The chromium dimer is known to be a very difficult problem for all computational
chemistry approaches. The experimental binding energy of this molecule is ∼ -
0.056 a.u. The SCF binding energy (basis set= [20s12p9d5f]) is about +0.795 a.u.
In other words the “SCF molecule” does not exist (unbound by a large amount).
Our fixed-node DMC calculation obtained with SCF nodes leads to: E0(Cr2)-2
E0(Cr) = +0.01(3). Cr2 is therefore found to be unbound (or slightly bound) at
the fixed-node DMC level with “monoconfigurational” nodes, although a large part
of the correlation energy is recovered. Clearly, in this case, multiconfigurational
trial wavefunctions are called for. This result illustrates the importance of correctly
describing the nodal structure of the exact wavefunctions when applying FN-DMC.
Details about fixed-node simulations for “difficult” systems of quantum chemistry
can be found in [7, 8].
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Numerical analysis for electronic structure calculations: an overview

Eric Cancès

The first part of my talk will be devoted to the numerical simulation of the
Hartree-Fock model for molecular systems of moderate size (up to a few hundreds
of electrons). After recalling the structure and the main mathematical proper-
ties of the Hartree-Fock model, I will present some theoretical results on Self-
Consistent Field (SCF) algorithms [1]. In particular, I will analyze the failures of
the Roothaan algorithm [2], and introduce the Optimal Damping Algorithm [3, 4]


