
ZeroMQ for massively
parallel codes
Anthony Scemama¹ <scemama@irsamc.ups-tlse.fr>

¹ Labratoire de Chimie et Physique Quantiques
 IRSAMC (Toulouse)

7/10/2015

Introduction
•Today : machines with 100k - 1M cores

•Bulk synchronous parallel algorithms don't scale : every
synchronization barrier kills the efficiency

•Hybrid MPI/OpenMP with asynchronous communications does a
better job

•MPI is not a universal solution

•OpenMP works very well on independent data (tasks), but
when locking is needed it becomes a nightmare or it doesn't
scale with hundreds of threads

•MPI and OpenMP are programmed very differently

1 / 43

• In a workflow, all steps don't scale equivalently : we need
dynamic (elastic) resources

•The machines are more complex => less reliable

•The machines are more and more heterogeneous : CPUs,
GPUs, XeonPhi, FPGA, Cloud resources etc...

2 / 43

System failures
Example:

•A job runs on 200 000 cores (10 000 nodes with 20 cores each)

•Each node has 64GiB of RAM : 8 modules

•The MTBF of a medium quality memory module if 500 years

• If all memory modules are statistically independent, the failure of
a memory module will happen in 500 x 365.25 / (10 000 x 8) =
2.3 days !

3 / 43

On massively parallel simulations, failures happen all the time and
they should be part of the design :

•File system (Lustre!) failures : use /dev/shm if possible

•Memory failure : stop using one node, and restart the
corresponding tasks

•Network failure : recover if possible

•Power failure : checkpoint/restart

4 / 43

MPI
Initial design (MPI 1):

•Single Program Multiple Data paradigm (avoidable since MPI 2)

•Very tightly coupled processes

•Synchronous communications

•Asynchronous send/receive exist but are more difficult to use

•The network is supposed to be fast, reliable, with low latency

•Designed for a fixed amount of resources and limited buffers

•All messages are supposed to be consumed

•Not fault tolerant : if one process crashes for any reason, all
the simulation is killed (or the program is in an undefined state)

5 / 43

As this initial design does not scale to millions of cores:

•Coupling MPI with OpenMP is encouraged : reduces the
number of MPI processes and more memory per process is
available

•MPI 3 introduces one-sided communications (MPI_Put /
MPI_Get).

Can we do better?

6 / 43

Program design
•SPMD encourages monolithic programs :

•Pain for the programmer

• If there is a bug in one task, everything crashes : handling
failures is difficult

•Unix philosophy : https://en.wikipedia.org/wiki/Unix_philosophy

• "Make each program do one thing well"

• "Make every program a filter"

• If one component fails, all the other components are
unaffected

7 / 43

https://en.wikipedia.org/wiki/Unix_philosophy

Microservices : (Wikipedia)

In computing, microservices is a software architecture style in
which complex applications are composed of small, independent
processes communicating with each other using
language-agnostic APIs. These services are small, highly
decoupled and focus on doing a small task, facilitating a modular
approach to system-building.

•Highly decoupled => scaling!

•Language-agnostic API : Use the most appropriate language.

8 / 43

Example in quantum chemistry
MP2 as a simple illustration (not the most optimal implementation)

In a human organization:

•The professor gives tasks to a few graduate students

•Each graduate student gives smaller tasks to many
undergraduate students

•When the task of the undergraduate is done, he/she gives the
result to any graduate student

9 / 43

•The graduate students combine the results and give the new
result to the professor who creates the result

10 / 43

•Any meeting in the middle of the process will slow things down

•The individuals can work whenever they want

•Some are more efficient than others, so the work should be
distributed dynamically

• If any individual gets sick, it is always possible to find a way to
replace him/her

This very natural scheme has nothing to do with bulk synchronous
parallelism and SPMD!

11 / 43

Master
•Prepare a list of pairs (i,j)

•When a forwarder requests a task :

•Send the couple (i,j)

•mark the task as running

•When a result is received :

•Send the next couple (i,j)

•Mark the next task as running

•Mark the task as done

•Accumulate the result

•Checkpoint the current state

12 / 43

•When the queue is empty :

•Continue to send currently running tasks to free forwarders

•When all the tasks are done :

•Tell all the forwarders to terminate

•Accumulate the result

•Terminate (without waiting for the forwarders)

13 / 43

Forwarder
•Get a pair (i,j) from the master

•Prepare a list of triplets (i,j,a)

•When a worker requests a task :

•Send the triplet (i,j,a)

•mark the task as running

•When a worker sends back the result :

•Send the next triplet (i,j,a)

•Mark the next task as running

•Mark the task as done

•Accumulate the result

14 / 43

•When the queue is empty :

•Continue to send currently running tasks to free forwarders

•When all the tasks are done :

•Accumulate the result

•Send to the master

•Request another pair (i,j)

•When the master requires termination :

•Kill all the known workers

•Terminate

15 / 43

Worker
•Ask for (i,j,a) to the forwarder

•Compute the sum over all b

•Return the result to the forwarder

•Request another task

•This scheme allows to add/remove resources at any time.

•Resilience : any point can fail without affecting the calculation

•Fortran/C can be used for workers, and Python/Ocaml can be
used to handle queues easily

•This scheme scales

16 / 43

ZeroMQ
•Communication library based on asynchronous message
passing

•Designed for finance (high volume trading)

•Lots of messages on the internet (unreliable, high latency
network)

•Resilient : handles network disconnections

•High Performance : 13.4 microsecond end-to-end latency on IB
network, > 8 million messages/second

•Same API for inter-thread, inter-process, network message
passing

17 / 43

•API is very simple to use (similar to BSD sockets)

•Encourages microservices

•Available in multiple languages : C, C++, Java, Fortran, PHP,
Python, Ocaml, Perl, Erlang, Ruby, Lua, C#, Haskell, Go, Scala,
and more ...

•Open Source (LGPL)

•Very portable : library is in C++.

• I was able to compile it on a Xeon Phi and get communications
to work in 5 minutes.

•Used for Multi-GPU programming in CUDA Programming: A
Developer's Guide to Parallel Computing with GPUs (Shane
Cook)

18 / 43

Sockets
•A socket is associated with a queue

•Sending a message : putting the message in the send queue
(post box)

•Receiving a message : getting a message from the receive
queue (post box)

19 / 43

Message Patterns
Socket pairs express different messaging patterns:

•REQ / REP : Request / Reply, two-sided communications

•PUSH / PULL : One-sided

•PUB / SUB : Publish / Subscribe, one-to-all (can use multicast)

•ROUTER / DEALER : Involved in load balancing / high
availability

20 / 43

REQ / REP

Always this sequence :

1.Client sends a request

2.Client receives a reply

21 / 43

Server code:

import zmq

context = zmq.Context.instance()

socket = context.socket(zmq.REP)

socket.bind("tcp://*:12345")

request = ""

while request != "end":

 request = socket.recv()

 socket.send("Received %s"%(request))

22 / 43

Client code:

import zmq, time

context = zmq.Context.instance()

socket = context.socket(zmq.REQ)

socket.connect("tcp://localhost:12345")

for i in range(3):

 socket.send("my_request")

 reply = socket.recv()

 print "received ", reply

 time.sleep(1)

socket.send("end")

reply = socket.recv()

23 / 43

Similar to BSD sockets : the number of clients is not fixed

Different from sockets :

•Binding can be done before or after connecting

•Messages are fairly queued => All clients will be served even if
one client floods the server

•One REQ socket can connect to multiple REP sockets : load
balancing

24 / 43

New server code:

import zmq

context = zmq.Context.instance()

socket = context.socket(zmq.REP)

socket.bind("tcp://*:12346") # <- new port number here

request = ""

while request != "end":

 request = socket.recv()

 socket.send("Server 2 received %s"%(request))

25 / 43

Client code:

import zmq, time

context = zmq.Context.instance()

socket = context.socket(zmq.REQ)

socket.connect("tcp://localhost:12345")

socket.connect("tcp://localhost:12346") # <- 2nd server here

for i in range(7):

 socket.send("my_request")

 reply = socket.recv()

 print "received ", reply

 time.sleep(1)

socket.send("end") ; socket.recv()

socket.send("end") ; socket.recv() # <- End both servers

26 / 43

Router / Dealer
In the previous example, for each new REP server added we had
to give its address to the clients. The Router / Dealer pattern
inserts a static broker in the middle of the connexions:

27 / 43

PUB/SUB
Publish / Subscribe.

•Analogous to the radio : if come too late, you miss the show

•All the subscribed clients receive the message

• If no client is subscribed, the message is silently dropped

•Example : logging

28 / 43

Server:

include 'f77_zmq.h'

integer(ZMQ_PTR) :: zmq_context, debug_socket

integer :: rc

zmq_context = f77_zmq_ctx_new ()

debug_socket = f77_zmq_socket(zmq_context, ZMQ_PUB)

rc = f77_zmq_bind(debug_socket, 'tcp://*:12345')

allocate (temp_array(Nmax,Nmax))

write (message, *) &

 'Mem: ', Nmax*Nmax*8*1024, ' KiB Allocated'

call f77_zmq_send(debug_socket, message, &

29 / 43

 len_trim(message), 0)

do i=1,Nmax

 read(10) integrals

 write (message, *) 'I/O: ', Nbytes, ' read'

 call f77_zmq_send(debug_socket, message, &

 len_trim(message), 0)

 do j=1,Nmax

 do k=1,Nmax

 do l=1,Nmax

 ...

 end do

30 / 43

 end do

 write (message, *) 'I/O: ', Nbytes, ' written'

 call f77_zmq_send(debug_socket, message, &

 len_trim(message), 0)

 end do

 write (message, *) 'CPU: ', real(i)/real(Nmax), '%'

 rc = f77_zmq_send(debug_socket, message, &

 len_trim(message), 0)

end do

deallocate (temp_array)

31 / 43

write (message, *) 'Mem: ', Nmax*Nmax*8*1024, &

 ' KiB Deallocated'

call f77_zmq_send(debug_socket, message, &

 len_trim(message), 0)

rc = f77_zmq_close(debug_socket)

rc = f77_zmq_ctx_destroy(zmq_context)

32 / 43

Client:

import zmq

import sys

context = zmq.Context.instance()

socket = context.socket(zmq.SUB)

socket.connect("tcp://localhost:12345")

for i in sys.argv[1:]:

 socket.setsockopt(zmq.SUBSCRIBE, i)

while True:

 message = socket.recv()

 print message

33 / 43

PUSH/PULL
One-sided asynchronous send / receive.

34 / 43

Real Example : QMC=Chem
•Quantum Monte Carlo code developed at LCPQ

•98.4 % parallel efficiency on 16 000 cores (3 hours run)

•Fully asynchronous

•Fully resilient

•Elastic resources

•Combined run on Desktop computers, HPC cluster (CALMIP)
and Cloud infrastructure (France Grilles)

35 / 43

36 / 43

Other Use Cases
•Visualization : use PUB/SUB to send data to a real time 3D
renderer for molecular dynamics (DL_POLY_4 PRACE summer
project)

•Asynchronous I/O on compressed files with a proxy on each
node

•Debugging / measuring performance of MPI : Each process
writes a log in a PUB socket on the ethernet network.

37 / 43

Project at the LCPQ : Parallel tempering Path-Integral Monte Carlo
algorithm

•When a new client connects, a new temperature is given

•Each temperature is an MPI run with ~16-64 replicas (tightly
coupled nodes)

•Each replica uses multi-threaded MKL (24 cores/node)

•Each MPI run regularly sends in a PUB socket its energy to a
master server

•The master server randomly chooses which temperatures to
exchange according to the running energies

•The exchange is sent by the server in a PUB socket with the
new temperatures

38 / 43

•The points of the trajectories are sent using PUSH sockets to
I/O servers for compressed storage, or on-the-fly evaluation of
properties

39 / 43

Links
•ZeroMQ : http://zeromq.org

•ZeroMQ Guide : http://zguide.zeromq.org/

•Fortran Interface : https://github.com/scemama/f77_zmq (for
ZeroMQ 4.0)

Other libraries worth looking at:

•Nanomsg : a fork of ZeroMQ in C (no more C++)

•GASPI-GPI : A fault tolerant asynchronous low-latency
communication library for HPC

40 / 43

http://zeromq.org
http://zguide.zeromq.org/
https://github.com/scemama/f77_zmq

	Introduction
	System failures
	MPI
	Program design
	Example in quantum chemistry
	Master
	Forwarder
	Worker

	ZeroMQ
	Sockets
	Message Patterns
	REQ / REP
	Router / Dealer
	PUB/SUB
	PUSH/PULL
	Real Example : QMC=Chem
	Other Use Cases
	Links

