ZeroMQ for mas
parallel codes

Anthony Scemamat! <scemama@irsamc.ups-tlse.

1 Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Univarsite
Paul Sataticr

Introduction

e Today : machines with 100k - 1M cores

*Bulk synchronous parallel algorithms don't scale : every
synchronization barrier kills the efficiency

e Hybrid MP1/OpenMP with asynchronous communications does a
better job

* MPI Is not a universal solution

 OpenMP works very well on independent data (tasks), but
when locking is needed it becomes a nightmare or it doesn't
scale with hundreds of threads

 MPIl and OpenMP are programmed very differently

1/43

In a workflow, all steps don't scale equivalently : we need
dynamic (elastic) resources

* The machines are more complex => less reliable

*The machines are more and more heterogeneous . CPUs,
GPUs, XeonPhi, FPGA, Cloud resources etc...

2143

System failures

Example:

* A job runs on 200 000 cores (10 000 nodes with 20 cores each)
* Each node has 64GiB of RAM : 8 modules
 The MTBF of a medium quality memory module if 500 years

o If all memory modules are statistically independent, the failure of
a memory module will happen in 500 x 365.25 / (10 000 x 8) =
2.3 days !

3/43

On massively parallel simulations, failures happen all the time and
they should be part of the design :

* File system (Lustre!) failures : use /dev/shm if possible

eMemory failure : stop using one node, and restart the
corresponding tasks

* Network failure : recover if possible
* Power failure : checkpoint/restart

4/43

MPI

Initial design (MPI 1):
 Single Program Multiple Data paradigm (avoidable since MPI 2)
 VVery tightly coupled processes
e Synchronous communications
» Asynchronous send/receive exist but are more difficult to use
* The network is supposed to be fast, reliable, with low latency
* Designed for a fixed amount of resources and limited buffers
 All messages are supposed to be consumed

*Not fault tolerant : if one process crashes for any reason, all
the simulation is killed (or the program is in an undefined state)

5/43

As this initial design does not scale to millions of cores:

* Coupling MPI with OpenMP is encouraged : reduces the
number of MPI processes and more memory per process Iis
available

*MPIl 3 Introduces one-sided communications (MPI _Put /
MPI1_Get).

Can we do better?

6/43

Program design

 SPMD encourages monolithic programs :

e Pain for the programmer

o|f there iIs a bug in one task, everything crashes : handling
failures is difficult

« Unix philosophy : https://en.wikipedia.org/wiki/Unix_philosophy
«"Make each program do one thing well"
«"Make every program a filter"

If one component fails, all the other components are
unaffected

7143

https://en.wikipedia.org/wiki/Unix_philosophy

Microservices : (Wikipedia)
In computing, microservices is a software architecture style In
which complex applications are composed of small, independent
processes communicating with each other using
language-agnostic APIs. These services are small, highly
decoupled and focus on doing a small task, facilitating a modular
approach to system-building.

* Highly decoupled => scaling!
e Language-agnostic API : Use the most appropriate language.

8/43

Example in qguantum chemistry

MP2 as a simple lllustration (not the most optimal implementation)
oCcC. VIT. %J‘ab ab‘j’ﬁ)

7 2ii (27]ab) (ab|ij) —ZZE sl
1 4 T Sm

t,j a,b Ci +€j_6 &b 1,7 a,b

In a human organization:
* The professor gives tasks to a few graduate students

sEach graduate student gives smaller tasks to many
undergraduate students

When the task of the undergraduate is done, he/she gives the
result to any graduate student

9/43

 The graduate students combine the results and give the
result to the professor who creates the result

new

——

| |
| |
L (i1,j1,a1,b1)
L p| Worker
|
YY
Forwarder b work
orker
(i1,j1,a2,b2)
(i2,j2,a3,b3)
p| Worker
Forwarder
A
L — » | Worker
! ! (i2,j2,a4,b4)
[
[

——

__

__

* Any meeting in the middle of the process will slow things down
* The individuals can work whenever they want

eSome are more efficient than others, so the work should be
distributed dynamically

o If any individual gets sick, it is always possible to find a way to
replace him/her

This very natural scheme has nothing to do with bulk synchronous
parallelism and SPMD!

11/43

Master

* Prepare a list of pairs (1,))
When a forwarder requests a task :

* Send the couple (i,))

e mark the task as running
When a result is received :

» Send the next couple (i,))

e Mark the next task as running

e Mark the task as done

e Accumulate the result

e Checkpoint the current state

12 /43

* When the queue is empty :

e Continue to send currently running tasks to free forwarders
* When all the tasks are done :

e Tell all the forwarders to terminate
* Accumulate the result
e Terminate (without waiting for the forwarders)

13/43

Forwarder

» Get a pair (i,)) from the master
* Prepare a list of triplets (i,],a)
* When a worker requests a task :
» Send the triplet (i,},a)
e mark the task as running
 When a worker sends back the result :
» Send the next triplet (i,},a)
e Mark the next task as running
e Mark the task as done
e Accumulate the result

14/ 43

* When the queue is empty :

e Continue to send currently running tasks to free forwarders
* When all the tasks are done :

e Accumulate the result

e Send to the master

* Request another pair (i,))
* When the master requires termination :

o Kill all the known workers

e Terminate

15/43

Worker

» Ask for (i,J,a) to the forwarder

e Compute the sum over all b

e Return the result to the forwarder
* Request another task

* This scheme allows to add/remove resources at any time.
e Resilience : any point can fail without affecting the calculation

e Fortran/C can be used for workers, and Python/Ocaml can be
used to handle queues easily

* This scheme scales

16 /43

ZeroMQ

e Communication library based on asynchronous message
passing

* Designed for finance (high volume trading)

Lots of messages on the internet (unreliable, high latency
network)

e Resilient : handles network disconnections

e High Performance : 13.4 microsecond end-to-end latency on IB
network, > 8 million messages/second

«Same API for inter-thread, inter-process, network message
passing

17143

* APl Is very simple to use (similar to BSD sockets)
e Encourages microservices

e Available in multiple languages . C, C++, Java, Fortran, PHP,
Python, Ocaml, Perl, Erlang, Ruby, Lua, C#, Haskell, Go, Scala,
and more ...

* Open Source (LGPL)
*Very portable : library is in C++.

| was able to compile it on a Xeon Phi and get communications
to work in 5 minutes.

eUsed for Multi-GPU programming in CUDA Programming: A
Developer's Guide to Parallel Computing with GPUs (Shane
Cook)

18 /43

Sockets

» A socket is associated with a queue

«Sending a message . putting the message in the send queue
(post box)

*Receiving a message : getting a message from the receive
gueue (post box)

Send Queue Receive Queus
Message Transport Message

: i

i
i

19 /43

Message Patterns

Socket pairs express different messaging patterns:

*REQ / REP : Request / Reply, two-sided communications
« PUSH / PULL : One-sided
 PUB / SUB : Publish / Subscribe, one-to-all (can use multicast)

ROUTER / DEALER : Involved in load balancing / high
availability

20/ 43

REQ / REP

REF

1. Request
Client REQ P
2. Reply

Always this sequence :

1. Client sends a request
2.Client receives a reply

21/43

:

Server code:

| nport

context = znyg. Context.instance()
socket = context.socket(zng. REP)
socket.bind("tcp://*:12345")

request = "°

whil e request !'= "end":
request = socket.recv()
socket . send(" Recei ved %" % request))

22143

Client code:

| npor t :
context = znyg. Context.instance()
socket = context.socket(zng. REQ

socket . connect ("tcp:// | ocal host: 12345")
for 1 1n range(3):
socket . send("ny request")
reply = socket.recv()
print "received ", reply
tinme.sleep(l)
socket . send("end")
reply = socket.recv()

23143

Similar to BSD sockets : the number of clients is not fixed
Different from sockets :

* Binding can be done before or after connecting

* Messages are fairly gueued => All clients will be served even if
one client floods the server

*One REQ socket can connect to multiple REP sockets : load
balancing

v

v

Client REQ REP Server

24 | 43

New server code;:
| nport

context = zng. Cont ext.instance()
socket = context.socket (zng. REP)
socket.bind("tcp://*:12346") # <- new port nunber here

request = ""
whil e request != "end":
request = socket.recv()
socket . send(" Server 2 received %" % request))

25143

Client code:

| nport :
context = znyg. Cont ext.instance()
socket = context.socket (zng. REQ

socket.connect ("tcp://| ocal host: 12345")
socket.connect ("tcp://1ocal host:12346") # <- 2nd server here
for i in range(7):
socket . send("ny request")
reply = socket.recv()
print "received ", reply
time.sleep(l)
socket.send("end") ; socket.recv()
socket.send("end") ; socket.recv() # <- End both servers

26/ 43

Router / Dealer

In the previous example, for each new REP server added we had
to give its address to the clients. The Router / Dealer pattern
Inserts a static broker in the middle of the connexions:

Connect Connect

REP
Bind
Broker . 4—)| REP

1z

Fair Load
Queuing Balancing

Client REQ

Client REQ

REQ

27143

PUB/SUB

Publish / Subscribe.

* Analogous to the radio : if come too late, you miss the show
o All the subscribed clients receive the message

* If no client is subscribed, the message is silently dropped

« Example : logging

28 /43

Server:

I nclude 'f77 _zny. h'
| nteger (ZMQ PTR) :: zng_context, debug socket
| nt eger o rc

zhg_context = f77 _zng_ctx_new ()
debug socket = f77 zng socket (zng _context, ZMJQ PUB)
rc = f77_zng_bi nd(debug _socket, 'tcp://*:12345")

al l ocate (tenp_array(Nmax, Nmax))
wite (nmessage, *) &

"Mem ', Nmax* Nmax* 8* , ' KiB Al ocated
call f77 zmg_send(debug _socket, nessage, &

29 /43

len trim nmessage), 0O)

do 1 =1, Nmax
read(10) integrals
wite (nmessage, *) '"I/O ', Nbytes, ' read
call f77 zmg_send(debug _socket, nessage, &
len trim nmessage), 0)

do | =1, Nmax
do k=1, Nnax
do | =1, Nnax
end do

30/43

end do

wite (nmessage, *) 'I/O ', Noytes, ' witten
call f77_znmg_send(debug _socket, nessage, &
len trinm nmessage), 0)
end do

wite (nmessage, *) "'CPU. ', real (i)/real (Nmax), "%
rc = 177 _zng_send(debug_socket, nessage, &

len trin(nmessage), 0)

end do
deal | ocate (tenp_array)

31/43

wite (nmessage, *) "'Mem ', Nmax* Nmax*8*
Ki B Deal | ocat ed’
call f77 zmg_send(debug _socket, nessage, &
len trim nmessage), 0O)

Irc
Irc

f77 zmg _cl ose(debug_socket)
f77 zmg _ctx _destroy(zng_cont ext)

32/43

Client:

| nport
| nport

context = znyg. Context.instance()
socket = context.socket (zng. SUB)
socket . connect ("tcp:// | ocal host: 12345")
for 1 1n sys.argv[1l:]:

socket . set sockopt (zng. SUBSCRI BE, 1)
whi | e True:

nessage = socket.recv()

print nessage

33/43

PUSH/PULL

One-sided asynchronous send / receive.

B

tasks

PUS

-

34 /43

Real Example : QMC=Chem

* Quantum Monte Carlo code developed at LCPQ

*98.4 % parallel efficiency on 16 000 cores (3 hours run)
 Fully asynchronous

 Fully resilient

* Elastic resources

e« Combined run on Desktop computers, HPC cluster (CALMIP)
and Cloud infrastructure (France Grilles)

35/43

Master
(OCaml)

PULL

-+ o
m [=]
o w

REQ

—>
PUSH Worker
(IRPFS0)
o | L
REQ +«—L |-
Input data ‘ PUSH PULL —‘
<4 Porwarder L REQ
M | (OCaml) >
" Results —» Worker
. . (IRPFS0)
Termination
—
Mode
REQ
—>
Worker
(IRPFS0)
3 —
REQ +«—L |-
‘ PULL —‘
Forwarder L REQ
| (OCaml) »
\—b Worker
(IRPFS0)
—p

Node

36 /43

Other Use Cases

Visualization : use PUB/SUB to send data to a real time 3D
renderer for molecular dynamics (DL _POLY_4 PRACE summer
project)

* Asynchronous /O on compressed files with a proxy on each
node

* Debugging / measuring performance of MPI : Each process
writes a log in a PUB socket on the ethernet network.

37143

Project at the LCPQ : Parallel tempering Path-Integral Monte Carlo
algorithm

*When a new client connects, a new temperature is given

e Each temperature is an MPI run with ~16-64 replicas (tightly
coupled nodes)

* Each replica uses multi-threaded MKL (24 cores/node)

« Each MPI run regularly sends in a PUB socket its energy to a
master server

 The master server randomly chooses which temperatures to
exchange according to the running energies

* The exchange is sent by the server in a PUB socket with the
new temperatures

38/43

* The points of the trajectories are sent using PUSH sockets to
I/O servers for compressed storage, or on-the-fly evaluation of
properties

39/43

Links

« ZeroMQ : http://zeromq.org
« ZeroMQ Guide : http://zguide.zeromg.org/

e Fortran Interface : https://github.com/scemama/f77 _zmq (for
ZeroMQ 4.0)

Other libraries worth looking at:

 Nanomsg : a fork of ZeroMQ in C (no more C++)

« GASPI-GPI : A fault tolerant asynchronous low-latency
communication library for HPC

40/ 43

http://zeromq.org
http://zguide.zeromq.org/
https://github.com/scemama/f77_zmq

	Introduction
	System failures
	MPI
	Program design
	Example in quantum chemistry
	Master
	Forwarder
	Worker

	ZeroMQ
	Sockets
	Message Patterns
	REQ / REP
	Router / Dealer
	PUB/SUB
	PUSH/PULL
	Real Example : QMC=Chem
	Other Use Cases
	Links

