A fast Sparse SCF implementation: Application
to DFTB

A. Scemama!, M. Rapacioli

ILaboratoire de Chimie et Physique Quantiques / IRSAMC,
Toulouse, France

25 June 2013

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Outline

@ Efficient sparse matrix products

a, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Dense x dense matrix products can reach ~ 96% of the peak
performance of a CPU:

@ Floating-point operations (flops) scale as O(N?)

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Dense x dense matrix products can reach ~ 96% of the peak
performance of a CPU:

@ Floating-point operations (flops) scale as O(N?)
@ Memory accesses scale as O(N?)

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Dense x dense matrix products can reach ~ 96% of the peak
performance of a CPU:

@ Floating-point operations (flops) scale as O(N?)
@ Memory accesses scale as O(N?)

@ Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50-90 nanoseconds: 130-230 CPU
cycles at 2.6GHz) but

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Dense x dense matrix products can reach ~ 96% of the peak
performance of a CPU:

@ Floating-point operations (flops) scale as O(N?)
@ Memory accesses scale as O(N?)

@ Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50-90 nanoseconds: 130-230 CPU
cycles at 2.6GHz) but

@ Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Dense x dense matrix products can reach ~ 96% of the peak
performance of a CPU:

@ Floating-point operations (flops) scale as O(N?)
@ Memory accesses scale as O(N?)

@ Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50-90 nanoseconds: 130-230 CPU
cycles at 2.6GHz) but

@ Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies

@ Compute-bound, very efficient

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Sparse x sparse matrix products are very difficult to perform
efficiently:

@ Memory accesses scale as O(N)

Element-wise implementations enhance the inefficiency:

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Sparse x sparse matrix products are very difficult to perform
efficiently:

@ Memory accesses scale as O(N)
@ Floating-point operations (flops) scales as O(N)

Element-wise implementations enhance the inefficiency:

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Sparse x sparse matrix products are very difficult to perform
efficiently:

@ Memory accesses scale as O(N)
@ Floating-point operations (flops) scales as O(N)
@ Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Sparse x sparse matrix products are very difficult to perform
efficiently:

@ Memory accesses scale as O(N)
@ Floating-point operations (flops) scales as O(N)
@ Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

@ Compiler can’t produce efficient code (memory
indirections, branches)

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Sparse x sparse matrix products are very difficult to perform
efficiently:

@ Memory accesses scale as O(N)
@ Floating-point operations (flops) scales as O(N)
@ Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

@ Compiler can’t produce efficient code (memory
indirections, branches)

@ No vectorization

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

In another context (Quantum Monte Carlo), we developed an
efficient dense x sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

@ All arrays are 256-bit aligned (compiler directives)

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

In another context (Quantum Monte Carlo), we developed an
efficient dense x sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

@ All arrays are 256-bit aligned (compiler directives)

@ Leading dimensions are multiples of 8 : all columns 256-bit
aligned

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

In another context (Quantum Monte Carlo), we developed an
efficient dense x sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

@ All arrays are 256-bit aligned (compiler directives)

@ Leading dimensions are multiples of 8 : all columns 256-bit
aligned
@ Unroll and jam to reduce nb of stores

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

In another context (Quantum Monte Carlo), we developed an
efficient dense x sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:
@ All arrays are 256-bit aligned (compiler directives)
@ Leading dimensions are multiples of 8 : all columns 256-bit
aligned
@ Unroll and jam to reduce nb of stores
@ All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

In another context (Quantum Monte Carlo), we developed an
efficient dense x sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:
@ All arrays are 256-bit aligned (compiler directives)
@ Leading dimensions are multiples of 8 : all columns 256-bit
aligned
@ Unroll and jam to reduce nb of stores
@ All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
@ Static analysis of the binary (MAQAOQ): All inner-most loops
can reach the peak of 16 flops/cycle

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

In another context (Quantum Monte Carlo), we developed an
efficient dense x sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:
@ All arrays are 256-bit aligned (compiler directives)
@ Leading dimensions are multiples of 8 : all columns 256-bit
aligned
@ Unroll and jam to reduce nb of stores
@ All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
@ Static analysis of the binary (MAQAOQ): All inner-most loops
can reach the peak of 16 flops/cycle
@ “Only” 60%: Both memory and flops O(N?)

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

In another context (Quantum Monte Carlo), we developed an
efficient dense x sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:
@ All arrays are 256-bit aligned (compiler directives)
@ Leading dimensions are multiples of 8 : all columns 256-bit
aligned
@ Unroll and jam to reduce nb of stores
@ All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
@ Static analysis of the binary (MAQAOQ): All inner-most loops
can reach the peak of 16 flops/cycle
@ “Only” 60%: Both memory and flops O(N?)
@ Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Sparse representation of the matrices

Each sparse matrix is represented by two arrays:
@ An array of non-zero indices per column
@ An array of corresponding values

Example: One column of matrix V

Number of non-zero elements

[o0]
o
|'m| |<

B
B B
2 2
3 3114

Vind Vval

13

S
i

21

1.4
e

. Rapacioli Sparse DFTB

Efficient sparse matrix products

ki = Cina(m ,j)
kz = Cind (m+1,j) m
c1 = Cvar(m) j)
2 = Cuwal (m+1,j) %
X
C
(sparse)
+
i + >
H HC
(dénse) (dense)
k j

HC(:,j) = HC(:,j) + 1 x H(:, k1) + c2 x H(:, ke)

. Rapacioli Sparse DFTB

Efficient sparse matrix products

Efficient sparse x sparse matrix product in deMon-Nano:

@ Represent one sparse matrix as a collection of small
dense sub-matrices

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Efficient sparse x sparse matrix product in deMon-Nano:

@ Represent one sparse matrix as a collection of small
dense sub-matrices

@ Each dense sub-matrix is 256-bit aligned

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Efficient sparse x sparse matrix product in deMon-Nano:

@ Represent one sparse matrix as a collection of small
dense sub-matrices

@ Each dense sub-matrix is 256-bit aligned
@ Each column of the sub-matrix is 256-bit aligned (padding)

A. Scemama, M. Rapacioli Sparse DFTB

Efficient sparse matrix products

Efficient sparse x sparse matrix product in deMon-Nano:

@ Represent one sparse matrix as a collection of small
dense sub-matrices

@ Each dense sub-matrix is 256-bit aligned
@ Each column of the sub-matrix is 256-bit aligned (padding)
@ The number of loop-cycles is set to a multiple of 8

A. Scemama, M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

Outline

9 Preparation: partition of the 3D space

A. Scemama, M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

@ A set of m centers (means) is first distributed evenly in the
3D-space

A. Scemama, M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

@ A set of m centers (means) is first distributed evenly in the
3D-space

@ Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

A. Scemama, M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

@ A set of m centers (means) is first distributed evenly in the
3D-space

@ Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

© The position of the centers is moved to the centroid of the
connected molecules

A. Scemama, M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

@ A set of m centers (means) is first distributed evenly in the
3D-space

@ Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

© The position of the centers is moved to the centroid of the
connected molecules

© Go back to step 2 until the partition doesn’t change

A. Scemama, M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

M. Rapacioli Sparse DFTB

Preparation: partition of the 3D space

@ The atoms are then ordered by k-means centers

@ k-means neighbours are centers with at least 2 atoms less
than 20 a.u

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

Outline

Q Initial Guess of Molecular Orbitals (MOs)

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

@ For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)

Remarks:

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

@ For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)

@ Pack together occupied MOs of each k-means center

Remarks:

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

@ For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)

@ Pack together occupied MOs of each k-means center
@ Pack together virtual MOs of each k-means center

Remarks:

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

@ For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)

@ Pack together occupied MOs of each k-means center
@ Pack together virtual MOs of each k-means center

Remarks:
@ MOs belonging to the same molecule are orthonormal

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

@ For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)

@ Pack together occupied MOs of each k-means center
@ Pack together virtual MOs of each k-means center

Remarks:
@ MOs belonging to the same molecule are orthonormal

@ MOs belonging to k-means centers which are not
neighbours have a zero overlap

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

@ For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)

@ Pack together occupied MOs of each k-means center
@ Pack together virtual MOs of each k-means center

Remarks:
@ MOs belonging to the same molecule are orthonormal

@ MOs belonging to k-means centers which are not
neighbours have a zero overlap

@ MOs have non-zero coefficients only on basis functions
which belong to the same molecule

A. Scemama, M. Rapacioli Sparse DFTB

Initial Guess of Molecular Orbitals (MOs)

@ For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)

@ Pack together occupied MOs of each k-means center
@ Pack together virtual MOs of each k-means center

Remarks:
@ MOs belonging to the same molecule are orthonormal

@ MOs belonging to k-means centers which are not
neighbours have a zero overlap

@ MOs have non-zero coefficients only on basis functions
which belong to the same molecule

@ The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Outline

e Orthonormalization of MOs

a, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Diagonalization of C'SC

@ The C matrix is already stored sparse

Output : CTSC =1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Diagonalization of C'SC

@ The C matrix is already stored sparse
@ Compute S (sparse)

Output : CTSC =1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Diagonalization of C'SC

@ The C matrix is already stored sparse
@ Compute S (sparse)
© Compute C'SC (sparse)

Output : CTSC =1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Diagonalization of C'SC

@ The C matrix is already stored sparse
@ Compute S (sparse)

© Compute C'SC (sparse)

© Normalize using diagonal elements

Output : CTSC =1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Diagonalization of C'SC

@ The C matrix is already stored sparse
@ Compute S (sparse)

© Compute C'SC (sparse)

© Normalize using diagonal elements

©@ Perform Jacobi-like rotations to remove the largest
off-diagonal elements of C'SC

Output : CTSC =1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Diagonalization of C'SC

@ The C matrix is already stored sparse
@ Compute S (sparse)

© Compute C'SC (sparse)

© Normalize using diagonal elements

©@ Perform Jacobi-like rotations to remove the largest
off-diagonal elements of C'SC

© Go back to step 3 until the largest off-diagonal element is
below a threshold

Output : CTSC =1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of C'SC

S

(dense)

A. Scemama, M. Rapacioli

Sparse DFTB

C
(sparse)

vertical

band of
SC

(dense)

Orthonormalization of MOs

Parallel implementation of C'SC

(dénse)

A. Scemama, M. Rapacioli

Sparse DFTB

C
(sparse)

vertical

band of
SC

(dense)

Orthonormalization of MOs

Parallel implementation of C'SC

RS ave

Transpose sC

C
(sparse)
horizontal band horizontal band
of C+S of C+SC
(dense) (dense)

A. Sce M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of C'SC

Transpose C+SC

C+SC
(Sparse)

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

© If not possible, go to step 1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

© If not possible, go to step 1

@ Try to take lock j

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

© If not possible, go to step 1

@ Try to take lock j

© If not possible, free lock i and go to step 1

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

© If not possible, go to step 1

@ Try to take lock j

© If not possible, free lock i and go to step 1

@ Rotate i and

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

© If not possible, go to step 1

@ Try to take lock j

© If not possible, free lock i and go to step 1

@ Rotate i and

Q Mark (i,j) as done

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

© If not possible, go to step 1

@ Try to take lock j

© If not possible, free lock i and go to step 1

@ Rotate i and

Q Mark (i,j) as done

@ Freelocksiand;

A. Scemama, M. Rapacioli Sparse DFTB

Orthonormalization of MOs

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: | (C'SC),_.| > e.
Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

@ Pick the next rotation (i, /)

@ If rotation (i,)) is already done, go to step 1

© Try to take lock i

© If not possible, go to step 1

@ Try to take lock j

© If not possible, free lock i and go to step 1

@ Rotate i and

Q Mark (i,j) as done

@ Freelocksiand;

@ Go back to step 1 until all rotations are done

A. Scemama, M. Rapacioli Sparse DFTB

Partial Diagonalization of H

Outline

e Partial Diagonalization of H

a, M. Rapacioli Sparse DFTB

Partial Diagonalization of H

@ The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks

A. Scemama, M. Rapacioli Sparse DFTB

Partial Diagonalization of H

@ The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks

@ Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks

A. Scemama, M. Rapacioli Sparse DFTB

Partial Diagonalization of H

@ The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks

@ Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks

@ Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)

A. Scemama, M. Rapacioli Sparse DFTB

Partial Diagonalization of H

@ The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks

@ Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks

@ Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)

@ The partial diagonalization of C'HC is performed like the

diagonalization C'SC, computing only the occupied-virtual
blocks.

A. Scemama, M. Rapacioli Sparse DFTB

Partial Diagonalization of H

@ The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks

@ Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks

@ Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)

@ The partial diagonalization of CTHC is performed like the
diagonalization C'SC, computing only the occupied-virtual
blocks.

@ Double precision is not required here — Single precision.

A. Scemama, M. Rapacioli Sparse DFTB

Partial Diagonalization of H

@ The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks

@ Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks

@ Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)

@ The partial diagonalization of CTHC is performed like the
diagonalization C'SC, computing only the occupied-virtual
blocks.

@ Double precision is not required here — Single precision.

@ The self-consistence step is inserted before each C'HC
product

A. Scemama, M. Rapacioli Sparse DFTB

Outline

e Results

a, M. Rapacioli Sparse DFTB

Benchmark: Boxes of water molecules, up to 120 000 atoms

@ One compute node
(OpenMP)

@ Intel Xeon E5-2670,
2.7GHz (up to 3.3 GHz
turbo)

@ 2 sockets, 8 cores/socket

@ 64Gb RAM

M. Rapacioli Sparse DFTB

Numerical precision

The relative error £-ELarck g helow 10~2:
E
LAPACK

LAPACK This work Relative Error
184 -749.63938702 -749.63938711 1.210°10
368 -1499.33163492 -1499.33163483 0.6 10710
736 -2998.74237166 -2998.74237211 1510710

1472 -5997.78267988 -5997.78268084 1.6 10710

The sparse cut-off criterion is adjusted with the target SCC

convergence criterion e:
our numerical errors are always lower than ¢/10

A. Scemama, M. Rapacioli Sparse DFTB

Total wall time

‘ 141 —%—
100 2+2 -
| 444 —m—
8+8 —o—
e _‘ 16+16
2
:]
5
£
E
S wf] :
=
5|
40 —|
20 «l
]
| -
o e A= I I I L 1

0 5000 10000 15000 20000 25000 30000 35000 40000

Number of water molecules

. Rapacioli Sparse DFTB

Parallel speed-up

T
AT
_,A— — — 8+8
B0 —¥—

e

10 /*" 14 4
40 —m—
242 —o—

sl 2+0 |

1+1 —4—

Parallel speed-up
ES

0 L I I I I L I
0 2000 4000 6000 BOOD 10000 12000 14000 16000

Number of water molecules

a, M. Rapac Sparse DFTB

Parallel efficiency

11 T T T T T T
16+16 (HT) —+—

Parallel efficiency

0.3 1 -

02 I L 1 I I L 1
0 2000 4000 6000 BOOD 10000 12000 14000 16000

Number of water molecules

a, M. Rapac Sparse DFTB

Results

Computational efficiency

@ Orthonormalization: 18.5 GFlops/s DP (peak: 345.6
GFlops/s), L3: 83 GiB/sec (RAM peak: 102 GiB/sec)

@ Partial diagonalization: 16.5 GFlops/s SP (peak: 691.2
GFlops/s), L3: 64 GiB/sec

@ Memory latency -bound (50-90 ns)
@ Memory consumption: ~ 1 MiB /water molecule

A. Scemama, M. Rapacioli Sparse DFTB

More results

CALMIP SGI Altix UV: (48 sockets E7-8837 @ 2.67GHz, 8
cores/socket, 3Tb RAM)

(NUMA, RAM latencies: 90— > 1000 ns)
Results with 128 cores

@ 184 000 molecules : 3.0 hours
@ 244 904 molecules : 5.5 hours
@ 317 952 molecules (1 million atoms!) : 9.0 hours

A. Scemama, M. Rapacioli Sparse DFTB

	Efficient sparse matrix products
	Preparation: partition of the 3D space
	Initial Guess of Molecular Orbitals (MOs)
	Orthonormalization of MOs
	Partial Diagonalization of H
	Results

