
logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

A fast Sparse SCF implementation: Application
to DFTB

A. Scemama1, M. Rapacioli1

1Laboratoire de Chimie et Physique Quantiques / IRSAMC,
Toulouse, France

25 June 2013

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Outline

1 Efficient sparse matrix products

2 Preparation: partition of the 3D space

3 Initial Guess of Molecular Orbitals (MOs)

4 Orthonormalization of MOs

5 Partial Diagonalization of H

6 Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Dense × dense matrix products can reach ∼ 96% of the peak
performance of a CPU:

Floating-point operations (flops) scale as O(N3)

Memory accesses scale as O(N2)

Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50–90 nanoseconds: 130–230 CPU
cycles at 2.6GHz) but
Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies
Compute-bound, very efficient

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Dense × dense matrix products can reach ∼ 96% of the peak
performance of a CPU:

Floating-point operations (flops) scale as O(N3)

Memory accesses scale as O(N2)

Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50–90 nanoseconds: 130–230 CPU
cycles at 2.6GHz) but
Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies
Compute-bound, very efficient

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Dense × dense matrix products can reach ∼ 96% of the peak
performance of a CPU:

Floating-point operations (flops) scale as O(N3)

Memory accesses scale as O(N2)

Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50–90 nanoseconds: 130–230 CPU
cycles at 2.6GHz) but
Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies
Compute-bound, very efficient

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Dense × dense matrix products can reach ∼ 96% of the peak
performance of a CPU:

Floating-point operations (flops) scale as O(N3)

Memory accesses scale as O(N2)

Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50–90 nanoseconds: 130–230 CPU
cycles at 2.6GHz) but
Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies
Compute-bound, very efficient

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Dense × dense matrix products can reach ∼ 96% of the peak
performance of a CPU:

Floating-point operations (flops) scale as O(N3)

Memory accesses scale as O(N2)

Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50–90 nanoseconds: 130–230 CPU
cycles at 2.6GHz) but
Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies
Compute-bound, very efficient

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Sparse × sparse matrix products are very difficult to perform
efficiently:

Memory accesses scale as O(N)

Floating-point operations (flops) scales as O(N)

Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

Compiler can’t produce efficient code (memory
indirections, branches)
No vectorization

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Sparse × sparse matrix products are very difficult to perform
efficiently:

Memory accesses scale as O(N)

Floating-point operations (flops) scales as O(N)

Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

Compiler can’t produce efficient code (memory
indirections, branches)
No vectorization

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Sparse × sparse matrix products are very difficult to perform
efficiently:

Memory accesses scale as O(N)

Floating-point operations (flops) scales as O(N)

Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

Compiler can’t produce efficient code (memory
indirections, branches)
No vectorization

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Sparse × sparse matrix products are very difficult to perform
efficiently:

Memory accesses scale as O(N)

Floating-point operations (flops) scales as O(N)

Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

Compiler can’t produce efficient code (memory
indirections, branches)
No vectorization

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Sparse × sparse matrix products are very difficult to perform
efficiently:

Memory accesses scale as O(N)

Floating-point operations (flops) scales as O(N)

Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

Compiler can’t produce efficient code (memory
indirections, branches)
No vectorization

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Sparse representation of the matrices

Each sparse matrix is represented by two arrays:
An array of non-zero indices per column
An array of corresponding values

Example: One column of matrix V

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Efficient sparse × sparse matrix product in deMon-Nano:
Represent one sparse matrix as a collection of small
dense sub-matrices
Each dense sub-matrix is 256-bit aligned
Each column of the sub-matrix is 256-bit aligned (padding)
The number of loop-cycles is set to a multiple of 8

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Efficient sparse × sparse matrix product in deMon-Nano:
Represent one sparse matrix as a collection of small
dense sub-matrices
Each dense sub-matrix is 256-bit aligned
Each column of the sub-matrix is 256-bit aligned (padding)
The number of loop-cycles is set to a multiple of 8

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Efficient sparse × sparse matrix product in deMon-Nano:
Represent one sparse matrix as a collection of small
dense sub-matrices
Each dense sub-matrix is 256-bit aligned
Each column of the sub-matrix is 256-bit aligned (padding)
The number of loop-cycles is set to a multiple of 8

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Efficient sparse × sparse matrix product in deMon-Nano:
Represent one sparse matrix as a collection of small
dense sub-matrices
Each dense sub-matrix is 256-bit aligned
Each column of the sub-matrix is 256-bit aligned (padding)
The number of loop-cycles is set to a multiple of 8

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Outline

1 Efficient sparse matrix products

2 Preparation: partition of the 3D space

3 Initial Guess of Molecular Orbitals (MOs)

4 Orthonormalization of MOs

5 Partial Diagonalization of H

6 Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

1 A set of m centers (means) is first distributed evenly in the
3D-space

2 Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

3 The position of the centers is moved to the centroid of the
connected molecules

4 Go back to step 2 until the partition doesn’t change

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

1 A set of m centers (means) is first distributed evenly in the
3D-space

2 Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

3 The position of the centers is moved to the centroid of the
connected molecules

4 Go back to step 2 until the partition doesn’t change

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

1 A set of m centers (means) is first distributed evenly in the
3D-space

2 Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

3 The position of the centers is moved to the centroid of the
connected molecules

4 Go back to step 2 until the partition doesn’t change

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The system is partitioned using a constrained variant of the
k-means clustering algorithm:

1 A set of m centers (means) is first distributed evenly in the
3D-space

2 Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

3 The position of the centers is moved to the centroid of the
connected molecules

4 Go back to step 2 until the partition doesn’t change

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The atoms are then ordered by k-means centers
k-means neighbours are centers with at least 2 atoms less
than 20 a.u

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Outline

1 Efficient sparse matrix products

2 Preparation: partition of the 3D space

3 Initial Guess of Molecular Orbitals (MOs)

4 Orthonormalization of MOs

5 Partial Diagonalization of H

6 Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Outline

1 Efficient sparse matrix products

2 Preparation: partition of the 3D space

3 Initial Guess of Molecular Orbitals (MOs)

4 Orthonormalization of MOs

5 Partial Diagonalization of H

6 Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Diagonalization of C†SC

1 The C matrix is already stored sparse
2 Compute S (sparse)
3 Compute C†SC (sparse)
4 Normalize using diagonal elements
5 Perform Jacobi-like rotations to remove the largest

off-diagonal elements of C†SC
6 Go back to step 3 until the largest off-diagonal element is

below a threshold

Output : C†SC = I

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Diagonalization of C†SC

1 The C matrix is already stored sparse
2 Compute S (sparse)
3 Compute C†SC (sparse)
4 Normalize using diagonal elements
5 Perform Jacobi-like rotations to remove the largest

off-diagonal elements of C†SC
6 Go back to step 3 until the largest off-diagonal element is

below a threshold

Output : C†SC = I

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Diagonalization of C†SC

1 The C matrix is already stored sparse
2 Compute S (sparse)
3 Compute C†SC (sparse)
4 Normalize using diagonal elements
5 Perform Jacobi-like rotations to remove the largest

off-diagonal elements of C†SC
6 Go back to step 3 until the largest off-diagonal element is

below a threshold

Output : C†SC = I

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Diagonalization of C†SC

1 The C matrix is already stored sparse
2 Compute S (sparse)
3 Compute C†SC (sparse)
4 Normalize using diagonal elements
5 Perform Jacobi-like rotations to remove the largest

off-diagonal elements of C†SC
6 Go back to step 3 until the largest off-diagonal element is

below a threshold

Output : C†SC = I

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Diagonalization of C†SC

1 The C matrix is already stored sparse
2 Compute S (sparse)
3 Compute C†SC (sparse)
4 Normalize using diagonal elements
5 Perform Jacobi-like rotations to remove the largest

off-diagonal elements of C†SC
6 Go back to step 3 until the largest off-diagonal element is

below a threshold

Output : C†SC = I

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Diagonalization of C†SC

1 The C matrix is already stored sparse
2 Compute S (sparse)
3 Compute C†SC (sparse)
4 Normalize using diagonal elements
5 Perform Jacobi-like rotations to remove the largest

off-diagonal elements of C†SC
6 Go back to step 3 until the largest off-diagonal element is

below a threshold

Output : C†SC = I

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of C†SC

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of C†SC

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of C†SC

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of C†SC

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Outline

1 Efficient sparse matrix products

2 Preparation: partition of the 3D space

3 Initial Guess of Molecular Orbitals (MOs)

4 Orthonormalization of MOs

5 Partial Diagonalization of H

6 Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks
Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks
Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)
The partial diagonalization of C†HC is performed like the
diagonalization C†SC, computing only the occupied-virtual
blocks.
Double precision is not required here −→ Single precision.
The self-consistence step is inserted before each C†HC
product

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks
Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks
Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)
The partial diagonalization of C†HC is performed like the
diagonalization C†SC, computing only the occupied-virtual
blocks.
Double precision is not required here −→ Single precision.
The self-consistence step is inserted before each C†HC
product

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks
Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks
Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)
The partial diagonalization of C†HC is performed like the
diagonalization C†SC, computing only the occupied-virtual
blocks.
Double precision is not required here −→ Single precision.
The self-consistence step is inserted before each C†HC
product

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks
Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks
Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)
The partial diagonalization of C†HC is performed like the
diagonalization C†SC, computing only the occupied-virtual
blocks.
Double precision is not required here −→ Single precision.
The self-consistence step is inserted before each C†HC
product

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks
Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks
Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)
The partial diagonalization of C†HC is performed like the
diagonalization C†SC, computing only the occupied-virtual
blocks.
Double precision is not required here −→ Single precision.
The self-consistence step is inserted before each C†HC
product

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks
Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks
Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)
The partial diagonalization of C†HC is performed like the
diagonalization C†SC, computing only the occupied-virtual
blocks.
Double precision is not required here −→ Single precision.
The self-consistence step is inserted before each C†HC
product

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Outline

1 Efficient sparse matrix products

2 Preparation: partition of the 3D space

3 Initial Guess of Molecular Orbitals (MOs)

4 Orthonormalization of MOs

5 Partial Diagonalization of H

6 Results

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Benchmark: Boxes of water molecules, up to 120 000 atoms

One compute node
(OpenMP)
Intel Xeon E5-2670,
2.7GHz (up to 3.3 GHz
turbo)
2 sockets, 8 cores/socket
64Gb RAM

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Numerical precision

The relative error E−ELAPACK
ELAPACK

is below 10−9:

LAPACK This work Relative Error
184 -749.63938702 -749.63938711 1.2 10−10

368 -1499.33163492 -1499.33163483 0.6 10−10

736 -2998.74237166 -2998.74237211 1.5 10−10

1472 -5997.78267988 -5997.78268084 1.6 10−10

The sparse cut-off criterion is adjusted with the target SCC
convergence criterion ε:
our numerical errors are always lower than ε/10

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Total wall time

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel speed-up

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Parallel efficiency

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

Computational efficiency

Orthonormalization: 18.5 GFlops/s DP (peak: 345.6
GFlops/s), L3: 83 GiB/sec (RAM peak: 102 GiB/sec)
Partial diagonalization: 16.5 GFlops/s SP (peak: 691.2
GFlops/s), L3: 64 GiB/sec
Memory latency -bound (50–90 ns)
Memory consumption: ∼ 1 MiB /water molecule

A. Scemama, M. Rapacioli Sparse DFTB

logos

Efficient sparse matrix products
Preparation: partition of the 3D space

Initial Guess of Molecular Orbitals (MOs)
Orthonormalization of MOs

Partial Diagonalization of H
Results

More results

CALMIP SGI Altix UV: (48 sockets E7-8837 @ 2.67GHz, 8
cores/socket, 3Tb RAM)
(NUMA, RAM latencies: 90– > 1000 ns)
Results with 128 cores

184 000 molecules : 3.0 hours
244 904 molecules : 5.5 hours
317 952 molecules (1 million atoms!) : 9.0 hours

A. Scemama, M. Rapacioli Sparse DFTB

	Efficient sparse matrix products
	Preparation: partition of the 3D space
	Initial Guess of Molecular Orbitals (MOs)
	Orthonormalization of MOs
	Partial Diagonalization of H
	Results

