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Dense × dense matrix products can reach ∼ 96% of the peak
performance of a CPU:

Floating-point operations (flops) scale as O(N3)

Memory accesses scale as O(N2)

Memory accesses have a very high latency (>300 CPU
cycles) (1 RAM access is 50–90 nanoseconds: 130–230 CPU
cycles at 2.6GHz) but
Regular memory access patterns can be pre-fetched by
the CPU in the caches, hiding the memory latencies
Compute-bound, very efficient
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Sparse × sparse matrix products are very difficult to perform
efficiently:

Memory accesses scale as O(N)

Floating-point operations (flops) scales as O(N)

Necessarily memory-bound
Element-wise implementations enhance the inefficiency:

Compiler can’t produce efficient code (memory
indirections, branches)
No vectorization
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In another context (Quantum Monte Carlo), we developed an
efficient dense × sparse matrix subroutine for small matrices
(<4000), reaching more than 60% of the peak performance:

All arrays are 256-bit aligned (compiler directives)
Leading dimensions are multiples of 8 : all columns 256-bit
aligned
Unroll and jam to reduce nb of stores
All inner-most loops are fully vectorized : always a multiple
of 8 loop cycles
Static analysis of the binary (MAQAO): All inner-most loops
can reach the peak of 16 flops/cycle
“Only” 60%: Both memory and flops O(N2)

Memory bound, but memory latencies reduced by
pre-fetching in the dense matrix.
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Sparse representation of the matrices

Each sparse matrix is represented by two arrays:
An array of non-zero indices per column
An array of corresponding values

Example: One column of matrix V
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Efficient sparse × sparse matrix product in deMon-Nano:
Represent one sparse matrix as a collection of small
dense sub-matrices
Each dense sub-matrix is 256-bit aligned
Each column of the sub-matrix is 256-bit aligned (padding)
The number of loop-cycles is set to a multiple of 8
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The system is partitioned using a constrained variant of the
k-means clustering algorithm:

1 A set of m centers (means) is first distributed evenly in the
3D-space

2 Each molecule is attached to its closest center, such that
each center is connected to 4 molecules

3 The position of the centers is moved to the centroid of the
connected molecules

4 Go back to step 2 until the partition doesn’t change
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The atoms are then ordered by k-means centers
k-means neighbours are centers with at least 2 atoms less
than 20 a.u
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For each molecule, perform an independent non-SCC
DFTB calculation (Solve HC = ESC)
Pack together occupied MOs of each k-means center
Pack together virtual MOs of each k-means center

Remarks:
MOs belonging to the same molecule are orthonormal
MOs belonging to k-means centers which are not
neighbours have a zero overlap
MOs have non-zero coefficients only on basis functions
which belong to the same molecule
The orbitals are not orthonormal, but both the overlap (S)
and the MO coefficient (C) matrix are sparse.
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Diagonalization of C†SC

1 The C matrix is already stored sparse
2 Compute S (sparse)
3 Compute C†SC (sparse)
4 Normalize using diagonal elements
5 Perform Jacobi-like rotations to remove the largest

off-diagonal elements of C†SC
6 Go back to step 3 until the largest off-diagonal element is

below a threshold

Output : C†SC = I
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Parallel implementation of Jacobi-like rotations

First, dress the list of rotations to do: |
(
C†SC

)
i>j | > ε.

Prepare a 1D-array of OpenMP locks, (one lock for each MO).
All CPUs do at the same time:

1 Pick the next rotation (i, j)
2 If rotation (i, j) is already done, go to step 1
3 Try to take lock i
4 If not possible, go to step 1
5 Try to take lock j
6 If not possible, free lock i and go to step 1
7 Rotate i and j
8 Mark (i, j) as done
9 Free locks i and j

10 Go back to step 1 until all rotations are done
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The energy is independent of unitary transformations
among occupied-occupied blocks and virtual-virtual blocks
Brillouin’s theorem: It is sufficient to zero the
occupied-virtual blocks
Avoiding occupied-occupied and virtual-virtual rotations
keeps the orbitals local (sparse)
The partial diagonalization of C†HC is performed like the
diagonalization C†SC, computing only the occupied-virtual
blocks.
Double precision is not required here −→ Single precision.
The self-consistence step is inserted before each C†HC
product
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Benchmark: Boxes of water molecules, up to 120 000 atoms

One compute node
(OpenMP)
Intel Xeon E5-2670,
2.7GHz (up to 3.3 GHz
turbo)
2 sockets, 8 cores/socket
64Gb RAM
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Numerical precision

The relative error E−ELAPACK
ELAPACK

is below 10−9:

# LAPACK This work Relative Error
184 -749.63938702 -749.63938711 1.2 10−10

368 -1499.33163492 -1499.33163483 0.6 10−10

736 -2998.74237166 -2998.74237211 1.5 10−10

1472 -5997.78267988 -5997.78268084 1.6 10−10

The sparse cut-off criterion is adjusted with the target SCC
convergence criterion ε:
our numerical errors are always lower than ε/10
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Computational efficiency

Orthonormalization: 18.5 GFlops/s DP (peak: 345.6
GFlops/s), L3: 83 GiB/sec (RAM peak: 102 GiB/sec)
Partial diagonalization: 16.5 GFlops/s SP (peak: 691.2
GFlops/s), L3: 64 GiB/sec
Memory latency -bound (50–90 ns)
Memory consumption: ∼ 1 MiB /water molecule
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More results

CALMIP SGI Altix UV: (48 sockets E7-8837 @ 2.67GHz, 8
cores/socket, 3Tb RAM)
(NUMA, RAM latencies: 90– > 1000 ns)
Results with 128 cores

184 000 molecules : 3.0 hours
244 904 molecules : 5.5 hours
317 952 molecules (1 million atoms!) : 9.0 hours
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