
Millions of atoms in DFTB
Anthony Scemama¹ <scemama@irsamc.ups-tlse.fr>
Mathias Rapacioli¹
Nicolas Renon²

¹ Labratoire de Chimie et Physique Quantiques
 IRSAMC (Toulouse)
² CALMIP (Toulouse)

Large molecular systems:

• No chemistry can be done with a single point: need to calculate the energy for
multiple geometries (dynamics, Monte Carlo, ...)

• Memory grows as

• Computational complexity grows as

• Energy differences represent a very small fraction of the total energy ->
approximations should be carefully controlled

The calculation of the energy needs to be dramatically accelerated.

Linear-scaling techniques are a very common and efficient solution:

• Linear-Scaling in storage : going from to

• Linear-Scaling in operations : going from to

1

DFTB is well adapted to linear scaling techniques:

• No integrals to compute

• Minimal basis set (no diffuse functions)

• Larger systems are more sparse

Linear scaling DFTB is not new, and is already available:

• DFTB+ : Divide and Conquer (Yang et al, 1991)

• CP2K : Matrix sign function

• ADF : Density-matrix based method

2

Reducing flops is not necessarily good
do j=1,n
 do i=1,j
 dist1(i,j) = X(i,1)*X(j,1) + X(i,2)*X(j,2) + X(i,3)*X(j,3)
 end do
end do

do j=1,n
 do i=j+1,n
 dist1(i,j) = dist1(j,i)
 end do
end do

t(n=133) = 13.0 s, 3.0 GFlops/s
t(n=4125) = 95.4 ms, 0.44 GFlops/s (Large is 6.8x less efficient)

3

do j=1,n
 do i=1,n ! <-- 2x more flops!
 dist3(i,j) = X(i,1)*X(j,1) + X(i,2)*X(j,2) + X(i,3)*X(j,3)
 end do
end do

t(n=133) = 10.3 s : 1.26x speed up, 8.2 GFlops/s
t(n=4125) = 15.7 ms : 6.07x speed up, 5.4 GFlops/s (Large is 1.5x less efficient)

With data aligned on a 256-bit boundary using compiler directives:

t(n=133) = 7.2 s : 1.80x speed-up, 12.1 GFlops/s
t(n=4125) = 15.5 ms : 6.15x speed-up, 7.5 GFlops/s. (Large is 1.6x less
efficient)

4

WARNING

Linear-scaling is a limit when N goes to infinity. What matters is the wall time in
the useful range, and the control of the approximations.

 0 2e+06 4e+06 6e+06 8e+06 1e+07

O(N)
O(N^2)
O(N^3)

5

Difficulties arising with Linear scaling:

• Computers are better at making flops than moving data in memory

• Reduction of the arithmetic intensity (nb of operations per loaded or stored
byte) -> the bottleneck becomes data access

• Data access is never uniform (different levels of cache, hardware prefetching,
etc) : NUMA (Non Uniform Memory Access)

• Scaling curves are linear only if the data access is uniform (uniformly good or
uniformly bad)

6

Goal of this work

• Accelerate DFTB. Whatever the scaling, it has to be fast!

• OpenMP implementation: It will be so fast that MPI will be the bottleneck

• Large simulations have to fit in memory

• Results should be trusted when the calculation can't be done

• Small simulations should not suffer from the optimizations for large systems

Two reasons for "million of atoms" in the title:

• An impressive title for this presentation

• Test our implementation for much larger systems than needed

Long term project:

• Investigate DNA hairpins in water

• Add a layer of distributed parallelism for massively parallel Monte Carlo
simulations

7

Outline

1. Presentation of the algorithm

2. Hardware considerations

3. Technical implementation details

4. Benchmarks on boxes of liquid water

8

SCF Algorithm in DFTB
The choice of the algorithm was not driven by the reduction of flops, but on the
possibility of the hardware to be efficient at doing the calculation, even for
medium-sized systems. We chose a MO-based formalism.

1. Generate an initial guess of local orbitals

2. Re-order the orbitals in packets of spatially close orbitals

3. Orthonormalize the guess

4. SCF steps

• Instead of diagonalizing , only cancel the occupied-virtual block
(Brillouin's theorem, Stewart et al)

• At every SCF iteration, the occupied-virtual block is approximately canceled

• At convergence, the occupied-virtual block is zero to a given numerical
precision

5. Re-orthonormalize MOs before computing the final energy

9

Initial guess
The system is partitioned using a constrained variant of the k-means clustering
algorithm:

1. A set of m centers (means) is first distributed evenly in the 3D-space

2. Each fragment is attached to its closest center, such that each center is
connected to 4 molecules

3. The position of the centers is moved to the centroid of the connected
fragments

4. Go back to step 2 until the partition doesn’t change

10

11

12

13

14

• The atoms are then ordered by k-means centers

• k-means neighbours are centers with at least 2 atoms less than 20 a.u

• A non-SCC DFTB calculation is performed in parallel on each fragment

• All occupied MOs are packed together

• All virtual MOs are packed together

15

Remarks:

• MOs belonging to the same molecule are orthonormal

• MOs belonging to k-means centers which are not neighbours have a zero
overlap

• MOs have non-zero coefficients only on basis functions which belong to the
same molecule

• The orbitals are not orthonormal, but both the overlap () and the MO
coefficient () matrix are sparse.

This step takes less than 1% of the total wall time.

16

Orthonormalization of the MOs
Diagonalization of :

1. The matrix is already stored sparse

2. Compute (sparse) for each connected k-means groups (neighbours)

3. Compute (sparse)

4. Normalize using diagonal elements

5. Perform 1st order Jacobi-like rotations to remove the largest off-diagonal
elements of

6. Go back to step 3 until the largest off-diagonal element is below a threshold

• is calculated on the fly with

• Orthonormalization takes 40-50% of the total wall time.

• Bottleneck:

17

Parallel implementation of orbital rotations
Difficulty: each MO can be rotated only by one thread at at a time.

• First, dress the list of rotations to do.

• Prepare a 1D-array of OpenMP locks, (one lock for each MO).

• All CPUs do at the same time:

1. Pick the next rotation (i, j)

2. If rotation (i, j) is already done, go to step 1

3. Try to take lock i. If not possible, go to step 1

4. Try to take lock j

5. If not possible, free lock i and go to step 1

6. Rotate i and j and mark (i, j) as done

7. Free locks i and j

8. Go back to step 1 until all rotations are done

18

SCF steps
Partial diagonalization of

1. The matrix is already stored sparse

2. Compute (sparse)

3. Compute (sparse)

4. Perform exact Jacobi rotations to preserve orthonormality, but with
approximate angles: is not updated after a rotation

5. Go back to step 3 until the largest off-diagonal element is below a threshold

• is calculated on the fly with

This step can be safely performed in single precision

• data is 2x smaller, so data bandwidth is virtually 2x larger

• caches contain 2x more elements

• vectorization is 2x more efficient.

19

• Exact Jacobi rotations are performed to preserve orthonormality, but with
approximate angles: is not updated after a rotation.

• Rotations are done only in the occupied-virtual MO block

• Occupied MOs don't rotate between each other

• Virtual MOs don't rotate between each other

• The locality of occupied and virtual MOs is preserved

• MO rotations represent 3-6% of the total wall time

• Adding the step yields 33-40%

20

General hardware considerations

21

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

 10 100 1000 10000 100000 1e+06

n
a
n
o
se

co
n
d

s

KiB

Random read
Stride=16

Stride=128
Stride=256

Measures obtained with LMbench *

1 cycle = 0.29 ns, 1 peak flop SP = 0.018 ns

22

Integer (ns) bit ADD MUL DIV MOD

32 bit
64 bit

0.3
0.3

0.04
0.04

0.9
0.9

6.7
13.2

7.7
12.9

Floating Point (ns) ADD MUL DIV

32 bit
64 bit

0.9
0.9

1.5
1.5

4.4
6.8

Data read (ns) Random Prefetched

L1 cache
L2 cache
L3 cache
Memory on socket

1.18
3.5
13
75-80

1.18
1.6
1.7

3.

* http://www.bitmover.com/lmbench/

23

http://www.bitmover.com/lmbench/

Strategy to optimize shared-memory
access
Low aritmetic intensity : Bring the data to the CPU cores as fast as possible

• Reduce storage as much as possible, and re-compute

• Avoid thread migration and allocate/initialize memory locally in parallel regions
(first-touch policy)

• Every thread uses as much as possible memory which is close

• Use stride-1 access as much as possible to benefit from prefetching

• Reuse data which is in the caches

• Avoid to synchronize threads

• Static scheduling keeps the access to close memory and avoids thread
communication

24

Sparse storage

Takes a little more memory than CSR or CSC, but:

• Columns can be easily expanded or contracted

25

• Arrays are 256-bit aligned :

• optimized data access

• enables vectorization of small data fragments
• Leading dimension of is fixed :

• α × 512

• each column is 256 bit-aligned and starts at the beginning of a cache line

• two columns start on distinct memory pages : prefetch only the columns
• 24 : Avoid 4k aliasing (round-robin over the cache lines)

• has LD+1 elements (start at zero) : reduced 4k aliasing

Total memory usage:

• 982 GiB for 504 896 water molecules (1.5 million atoms)

• 680 KiB per atom

26

Dense x Sparse Matrix Product from
QMC=Chem

with a very small prefactor.

Inner-most loops:

• Perfect ADD/MUL balance

• Does not saturate load/store units

• Only vector operations with no peel/tail loops

• Uses 15 AVX registers. No register spilling

• If all data fits in L1, 100% peak is reached (16 flops/cycle)

• In practice: memory bound, so 50-60% peak is measured.

Efficient sparse x sparse matrix product in deMon-Nano: Represent one sparse
matrix as a collection of small dense sub-matrices.

27

28

Parallel implementation of CSC
Each thread computes 16 columns of

Data layout is SC(16, 16, N/16) : All 16x16 matrices are 256-bit aligned and fit in
L1 cache. 100% vectorized

29

Parallel implementation of CSC
Each thread computes 16 columns of

Data layout is SC(16, 16, N/16) : All 16x16 matrices are 256-bit aligned and fit in
L1 cache. 100% vectorized

30

Parallel implementation of CSC
Each thread computes 16 columns of

Data layout is SC(16, 16, N/16) : Fast transposition in cache

31

Parallel implementation of CSC
Each thread computes 16 columns of

Data layout is SC(16, 16, N/16) : Fast transposition in cache

32

Benchmarks

Boxes of water from 384 to 504 896 water molecules.

Two machines:

• Dual-socket Intel Xeon E5-2670, 8c @ 2.6GHz, Hyperthreading on, Turbo on,
64GiB RAM

• SGI Altix UV, large SMP machine : 384 cores and 3TiB RAM. Enormous
NUMA effects.

33

SGI Altiv UV
24 blades: 2x8 cores, 128 GB RAM, connected with NUMAlink
Single OS, shared memory, 384 cores, 3 TB RAM

34

NUMAlink : (latency: 195 - 957 ns, 2-10x larger than a standard server)

35

Parallel speed-up of (CXC)
Dual-socket server:

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000 12000 14000 16000

Pa
ra

lle
l
sp

e
e
d

-u
p

Number of water molecules

32 (HT) threads,
16 threads,

8 threads,
4 threads,
2 threads,

36

Altix-UV :

 1

 2

 3

 4

 5

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Pa
ra

lle
l
sp

e
e
d

-u
p

Number of water molecules

8 blades,
4 blades,
2 blades,

37

Wall time of CXC
Dual-socket server:

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000

W
a
ll

ti
m

e
 (

m
in

u
te

s)

Number of water molecules

1 thread
2 threads
4 threads
8 threads

16 threads
32 threads
O(N^1.24)

38

Altix-UV :

 1

 10

 100

 1000

 10000 100000 1e+06

W
a
ll

ti
m

e
 (

m
in

u
te

s)

Number of water molecules

8 blades
4 blades
2 blades
1 blade

O(N^1.49)

39

Global scaling
Dual-socket server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000 25000 30000 35000

W
a
ll

ti
m

e
 (

m
in

u
te

s)

Number of water molecules

LAPACK
1 thread

2 threads
4 threads
8 threads

16 threads
32 threads
O(N^1.71)

40

Altix-UV:

 10

 100

 1000

 10000 100000 1e+06

W
a
ll

ti
m

e
 (

m
in

u
te

s)

Number of water molecules

1 blade
2 blades
4 blades
8 blades

O(N^1.81)

41

Observed scaling is not linear:

• The behavior comes from the terms in the
Hamiltonian:

• For accurate results, it is important not to truncate 1/R.

• Very efficiently parallelized

• However, this quadratic scaling appears for large sizes

16 cores, 100 000 atoms 10% of total time

128 cores, 1 500 000 atoms 18% of total time

• We see it because all the rest is very fast!

• Could be improved by computing only the contributions where the charges
have changed

42

Error control
For 3312 water molecules

SCF convergence

E(Lapack) -13495.30553928 -13495.30617832

E(deMon-Nano) -13495.30553764 -13495.30617828

Error 1.2e-10 3.0e-12

t(Lapack) (s) 9 636.1 10 612.1

t(deMon-Nano) (s) 149.8 259.0

• Converges to the correct value

• Error of the method below the SCF convergence error

For 1 million water molecules, the total energy is ~ -4.7e6 a.u. To get the
chemical accuracy with 1 million water molecules, we need a precision of 1e-9
a.u per molecule: an absolute error of 2.5e-10

43

Comparison with CP2K
Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in
the Condensed Phase
J. VandeVondele, U. Borštnik, J. Hutter, JCTC, 8 (10), 3565-3573 (2012)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

A
v
e
ra

g
e
 C

P
U

 t
im

e
 p

e
r

a
to

m
 (

s)

Number of atoms

CP2K
Dual-socket

Altix-UV

Comparison is not quantitative: different architectures, different method, different
number of SCF cycles

44

• deMon-Nano exploits very well the hardware, especially for medium-sized
systems

• Wall time is better with CP2K for a single point with millions of atoms, because
it can use >9000 cores

• MPI communications are indeed important in CP2K (2s / atom)

• Latency of Numalink of Altix-UV is 1.5-3x lower than MPI/Infiniband

• Hardware memory prefetchers make automatically asynchronous inter-blade
communications

45

Conclusion

• We have accelerated deMon-Nano

• Parallel speedup is satisfactory

• Scaling is not linear, but our implementation is very efficient in the useful range
(->100 000 atoms)

• More and more cores/node -> Buying a newer machine will make the code run
faster

• Doesn't require petascale computers and expensive hardware for standard
simulations

• Results equivalent to diagnonalization, error below SCF threshold.

• Approximations below chemical accuracy for one million atoms.
Project for the next years:

Distributed large scale computations (EGI grid?, PRACE?, etc) for Monte Carlo
simulations of DNA in water.

46

	Reducing flops is not necessarily good
	Goal of this work
	Outline
	SCF Algorithm in DFTB
	Initial guess
	Orthonormalization of the MOs
	Parallel implementation of orbital rotations
	SCF steps
	General hardware considerations
	Strategy to optimize shared-memory access
	Sparse storage
	Dense x Sparse Matrix Product from QMC=Chem
	Parallel implementation of CSC
	Parallel implementation of CSC
	Parallel implementation of CSC
	Parallel implementation of CSC
	Benchmarks
	SGI Altiv UV
	Parallel speed-up of (CXC)
	Wall time of CXC
	Global scaling
	Error control
	Comparison with CP2K
	Conclusion

