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quantum chemistry

• Description of the electron cloud
• Nuclei are considered as fixed point charges
(Born-Oppenheimer approximation).
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Schrödinger’s equation for electrons

ĤΨ(r1, . . . , rN) = EΨ(r1, . . . , rN) (1)

• E: Energy of the system
• Hamiltonian operator:

Ĥ = T̂ + V̂ = − 1
2
∇2 + VNN + VeN + Vee (2)

• Ψ(r1, . . . , rN) : electronic wavefunction.
• [Ψ(r1, . . . , rN)]2 : 3N-dimensional probability density
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quantum chemistry

What does ĤΨ = EΨ mean?

• Ψ is an eigenfunction of Ĥ
• E is the associated eigenvalue

Elocal(r1, . . . , rN) =
ĤΨ(r1, . . . , rN)
Ψ(r1, . . . , rN)

= constant (3)

Whatever the positions of the electrons, the total energy must
be constant : conservation of energy !
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quantum chemistry

Plot of Elocal in BeH2
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quantum chemistry

Difficulties of quantum chemistry

• Each electron ”sees” the N− 1 other electrons
• Electron correlation : electrons are not independent
• Correlation is < 0.5% of the electronic energy
• Without correlation, F2 is not bound!
• Schrödinger’s equation is a differential equation in 3N
dimensions

• Can be solved exactly only for small models, but not ”real”
molecules =⇒ we look for approximate solutions
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quantum monte carlo simulation of amyloid-β peptide
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quantum chemistry methods in 1 slide

3N-dimensional PDE

• FCI : considered unreachable
• Post-Hartree-Fock methods : Approximations of FCI

3-dimensional PDE

• Hartree-Fock : No ↑↓ electron correlation
• DFT : Electron correlation treated as an effective potential.
Best ratio accuracy/cost.
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quantum chemistry

Absolute energies are dramatically bad with conventional
methods:

• Water, FCI/cc-pCVTZ can’t be computed (too expensive)

• Water, FCI/cc-pCVTZ has only 87% of the correlation energy

Why does it work?

• Chemistry is all about energy differences
• If a method is uniformly bad, energy differences are good!
• Cancellation of errors is the key
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quantum chemistry

Hierarchy of approximations

1. Hylleraas-type methods

(1 atom, less than 10 electrons)
2. F12-Full Configuration Interaction
3. Post-FCI Quantum Monte Carlo (∼ 3 non-hydrogen atoms)
4. Full Configuration Interaction (FCI)
5. Multi-Reference methods (MR-CI, CAS-PT2, DMRG,…)
6. Single reference QMC (∼ 100atoms)
7. Post-HF Single-reference methods (CCSD, MP2, …)
8. Density Functional Theory (DFT) (∼ 1000 atoms)
9. Tight-Binding DFT (DFTB) (∼ 10 000 atoms)
10. Semi-empirical methods (MNDO, AM1, PM3, PM6, …).

Parameterized on experimental data.
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benchmarks

Why benchmarks?

• Improving approximate models requires accurate
references

• All post-Hartree-Fock methods are approximations of FCI
• Some quantities we calculate are not accessible
experimentally
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benchmarks

1Slide taken from a seminar given by Denis Jacquemin 12



quantum chemistry
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full-ci

Full Configuration Interaction (FCI)

All possible ways to put N↑ electrons in M orbitals and N↓ elec-
trons in M orbitals:
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full-ci

Full Configuration Interaction (FCI)

• Exact when M→ ∞ (Complete Basis Set, CBS)
• Only approximation : one-electron basis set (orbitals)
• Can be computed exactly for small systems
• Breakthrough in 20091: Can be computed numerically with
FCI-QMC for larger systems

• Can be approached with selected-CI methods (CIPSI, SHCI,
etc) + perturbation theory and extrapolation

• Involves only a few groups in the world

1G. H. Booth, A. W. Thom, A. Alavi, J. Chem. Phys. 131, 054106 (2009).
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selected ci

Algorithm

1. Start with a single determinant : Ψn =

(
−−
−−
−↑−↓

)

2. Among other determinants, estimate which one will be
the most important, and add it to the vector space

3. Minimize the energy E and obtain a new wave function

and energy: Ψn+1 = c1

(
−−
−−
−↑−↓

)
+ c2

(
−−
−↑−↓
−−

)
4. Estimate with perturbation theory (PT2) the energy of all
the excluded determinants : EFCI ≈ E + EPT2

5. Go back to step 2
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selected ci

Ground state and 1st excited state of H2N
+ NH2

aug-cc-pVDZ
18 electrons in
111 orbitals
NFCIdet = 2.5× 1025

(42.4 moles)
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selected ci

Extrapolation to FCI limit (exFCI)
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selected ci

Extrapolation of exFCI to Complete Basis Set limit (CBS)
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application 1

• 110 transitions
• 18 molecules (H2O, H2S, NH3, HCl, N2, CO, C2H2, C2H4, CH2O,
CH2S, formamide, ketene, methanimine, nitrosomethane,
streptocyanine, acetaldehyde, cyclopropene,
diazomethane)

• Extrapolate selected-CI to FCI (exFCI)
• Extrapolate exFCI to complete basis set (CBS)
• Test 12 excited-states methods

1Loos et al, J. Chem. Theory Comput. 14, 8, 4360-4379, (2018)
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quantum chemistry

Hierarchy of approximations

1. Hylleraas-type methods (1 atom, less than 10 electrons)
2. F12-Full Configuration Interaction
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5. Multi-Reference methods (MR-CI, CAS-PT2, DMRG, …)
6. Single reference QMC (∼ 100atoms)
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Parameterized on experimental data. 21
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1Loos et al, J. Chem. Theory Comput. 14, 8, 4360-4379, (2018)
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application 2

• Doubly excited states
• Experimentally dark
• Can’t be described by conventional methods (TD-DFT)
• 20 vertical transitions
• 14 molecules
• Extrapolate selected-CI to FCI (exFCI)
• Extrapolate exFCI to complete basis set (CBS)

1Loos et al, J. Chem. Theory Comput. 15, 3, 1939-1956, (2019)
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quantum chemistry
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application 2

• Doubly excited states
• Extremely difficult with conventional methods (TD-DFT)
• 20 vertical transitions
• 14 molecules
• Extrapolate selected-CI to FCI (exFCI)
• Extrapolate exFCI to complete basis set (CBS)
• Conclusion: CC3 is excellent for single excitations, but still
not sufficient for doubles, where multi-configurational
methods are required

1Loos et al, J. Chem. Theory Comput. 15, 3, 1939-1956, (2019)
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quantum chemistry
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beyond fci

• Water molecule
• Quantum Monte Carlo on top of selected-CI
• The most accurate energy obtained today (lowest
upper-bound)

• Lowest excited states

1Caffarel et al, J. Chem. Phys. 144, 151103 (2016).
2Scemama et al, J. Chem. Phys. 149, 034108 (2018).
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beyond fci

1Scemama et al, J. Chem. Phys. 149, 034108 (2018).
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perspectives

Improve the convergence to CBS limit

1. F12-Full Configuration Interaction
2. Combine DFT with FCI to cure basis set incompleteness (E.
Giner and J. Toulouse, LCT)

3. Post-F12-FCI Quantum Monte Carlo
4. Use Slater-type atomic orbitals (M. Caffarel)
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computational details

• Quantum Monte Carlo calculations with QMC=Chem
developed in our group

• New methods and algorithms developed in Quantum
Package

Quantum Package

• Open-source software developed by LCPQ (Toulouse), LCT
(Paris)

• Massively parallel : benchmarks with up to 12 000 cores
on Irene (TGCC)

• https://quantumpackage.github.io/qp2/

• ArXiv : 1902.08154
• Fork for periodic systems with A. Benali’s group at
Argonne National Labs

36
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