EXTREME ACCURACY FOR BENCHMARK SYSTEMS

A. Scemama, P.-F. Loos, M. Caffarel 04/2019

Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

QUANTUM CHEMISTRY

- Description of the electron cloud
- Nuclei are considered as fixed point charges (Born-Oppenheimer approximation).

QUANTUM CHEMISTRY

- Description of the electron cloud
- Nuclei are considered as fixed point charges (Born-Oppenheimer approximation).

Schrödinger's equation for electrons

$$\hat{H}\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = E\,\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) \tag{1}$$

- E: Energy of the system
- Hamiltonian operator:

$$\hat{H} = \hat{T} + \hat{V} = -\frac{1}{2}\nabla^2 + V_{NN} + V_{eN} + V_{ee}$$
(2)

- $\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)$: electronic wavefunction.
- $\left[\Psi(r_1,\ldots,r_N)\right]^2$: 3*N*-dimensional probability density

What does $\hat{H}\Psi = E\Psi$ mean?

- $\cdot \Psi$ is an eigenfunction of \hat{H}
- E is the associated eigenvalue

$$E_{\text{local}}(\mathbf{r}_1, \dots, \mathbf{r}_N) = \frac{\hat{H}\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)}{\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)} = \text{constant}$$
(3)

Whatever the positions of the electrons, the total energy must be constant : conservation of energy !

Plot of Elocal in BeH₂

Figure 5: Local energy $E_{\rm L}(r)$ of the cuspless and cusp-corrected HF wave functions as an electron is moved through the nuclei (marked with thin black lines) of the BeH₂ molecule at experimental geometry. The other electrons have been positioned randomly. The Gaussian basis set is Pople's 6-31G basis and the Slater exponents have been obtained via Eq. (22).

Difficulties of quantum chemistry

- Each electron "sees" the N-1 other electrons
- Electron correlation : electrons are not independent
- \cdot Correlation is < 0.5% of the electronic energy
- Without correlation, F₂ is not bound!
- Schrödinger's equation is a differential equation in 3N dimensions
- Can be solved exactly only for small models, but not "real" molecules ⇒ we look for approximate solutions

QUANTUM MONTE CARLO SIMULATION OF AMYLOID-eta PEPTIDE

3N-dimensional PDE

- FCI : considered unreachable
- Post-Hartree-Fock methods : Approximations of FCI

3-dimensional PDE

- Hartree-Fock : No $\uparrow \downarrow$ electron correlation
- DFT : Electron correlation treated as an effective potential. Best ratio accuracy/cost.

• Water, FCI/cc-pCVTZ can't be computed (too expensive)

- Water, FCI/cc-pCVTZ can't be computed (too expensive)
- Water, FCI/cc-pCVTZ has only 87% of the correlation energy

- Water, FCI/cc-pCVTZ can't be computed (too expensive)
- Water, FCI/cc-pCVTZ has only 87% of the correlation energy

Why does it work?

- Water, FCI/cc-pCVTZ can't be computed (too expensive)
- Water, FCI/cc-pCVTZ has only 87% of the correlation energy

Why does it work?

• Chemistry is all about energy differences

- Water, FCI/cc-pCVTZ can't be computed (too expensive)
- Water, FCI/cc-pCVTZ has only 87% of the correlation energy

Why does it work?

- · Chemistry is all about energy differences
- · If a method is uniformly bad, energy differences are good!

- Water, FCI/cc-pCVTZ can't be computed (too expensive)
- Water, FCI/cc-pCVTZ has only 87% of the correlation energy

Why does it work?

- Chemistry is all about energy differences
- · If a method is uniformly bad, energy differences are good!
- Cancellation of errors is the key

1. Hylleraas-type methods

1. Hylleraas-type methods (1 atom, less than 10 electrons)

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo (\sim 3 non-hydrogen atoms)

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo (\sim 3 non-hydrogen atoms)
- 4. Full Configuration Interaction (FCI)

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo (\sim 3 non-hydrogen atoms)
- 4. Full Configuration Interaction (FCI)
- 5. Multi-Reference methods (MR-CI, CAS-PT2, DMRG,...)
- 6. Single reference QMC (\sim 100atoms)
- 7. Post-HF Single-reference methods (CCSD, MP2, ...)
- 8. Density Functional Theory (DFT) (\sim 1000 atoms)
- 9. Tight-Binding DFT (DFTB) (\sim 10 000 atoms)
- 10. Semi-empirical methods (MNDO, AM1, PM3, PM6, ...). Parameterized on experimental data.

Why benchmarks?

- Improving approximate models requires accurate references
- All post-Hartree-Fock methods are approximations of FCI
- Some quantities we calculate are not accessible experimentally

- Experiment : Vibrational states
- Computation : Points of the potential energy surfaces

Referee question : why to do benchmarks AGAIN?

- We wish to model ESIPT.
- One needs accurate geometries and energies,
- ... but we want to use TD-DFT.
- Difficult because :
 - **1** C-O and C=O bonds.
 - 2 Different polarities
 - 3 Usually rather close in energy
- Which benchmark values?
 - **1** Experiment : just no data...
 - 2 Theory : not that easy...

Denis Jacquemin

Dye quantum chemistry

Toulouse- France - Apr. 2019

¹Slide taken from a seminar given by Denis Jacquemin

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo (\sim 3 non-hydrogen atoms)
- 4. Full Configuration Interaction (FCI)
- 5. Multi-Reference methods (MR-CI, CAS-PT2, DMRG, ...)
- 6. Single reference QMC (\sim 100atoms)
- 7. Post-HF Single-reference methods (CCSD, MP2, ...)
- 8. Density Functional Theory (DFT) (\sim 1000 atoms)
- 9. Density Functional Tight Binding (DFTB) (\sim 10 000 atoms)
- 10. Semi-empirical methods (MNDO, AM1, PM3, PM6, ...). Parameterized on experimental data.

Full Configuration Interaction (FCI)

All possible ways to put N_{\uparrow} electrons in *M* orbitals and N_{\downarrow} electrons in *M* orbitals:

$$N_{det} = \left(\frac{M!}{N_{\uparrow}!(M-N_{\uparrow})!}\right) \times \left(\frac{M!}{N_{\downarrow}!(M-N_{\downarrow})!}\right)$$

Full Configuration Interaction (FCI)

- $\cdot\,$ Exact when ${\it M} \rightarrow \infty$ (Complete Basis Set, CBS)
- Only approximation : one-electron basis set (orbitals)
- Can be computed exactly for small systems
- Breakthrough in 2009¹: Can be computed numerically with FCI-QMC for larger systems
- Can be approached with selected-CI methods (CIPSI, SHCI, etc) + perturbation theory and extrapolation
- Involves only a few groups in the world

¹G. H. Booth, A. W. Thom, A. Alavi, *J. Chem. Phys.* **131**, 054106 (2009).

1. Start with a single determinant :
$$\Psi_n = \begin{pmatrix} -- \\ -- \\ \uparrow \downarrow \end{pmatrix}$$

- 1. Start with a single determinant : $\Psi_n = \begin{pmatrix} -- \\ -- \\ \pm + \end{pmatrix}$
- 2. Among other determinants, estimate which one will be the most important, and add it to the vector space

- 1. Start with a single determinant : $\Psi_n = \begin{pmatrix} -- \\ -- \\ + \end{pmatrix}$
- 2. Among other determinants, estimate which one will be the most important, and add it to the vector space
- 3. Minimize the energy *E* and obtain a new wave function and energy: $\Psi_{n+1} = c_1 \begin{pmatrix} --\\ --\\ + \downarrow \end{pmatrix} + c_2 \begin{pmatrix} --\\ + \downarrow\\ -- \end{pmatrix}$

- 1. Start with a single determinant : $\Psi_n = \begin{pmatrix} --\\ --\\ + \end{pmatrix}$
- 2. Among other determinants, estimate which one will be the most important, and add it to the vector space
- 3. Minimize the energy *E* and obtain a new wave function and energy: $\Psi_{n+1} = c_1 \begin{pmatrix} --\\ --\\ + \downarrow \end{pmatrix} + c_2 \begin{pmatrix} --\\ + \downarrow\\ -- \end{pmatrix}$
- 4. Estimate with perturbation theory (PT2) the energy of all the excluded determinants : $E_{\text{FCI}} \approx E + E_{\text{PT2}}$
- 5. Go back to step 2

SELECTED CI

17

SELECTED CI

Extrapolation to FCI limit (exFCI)

SELECTED CI

Extrapolation of exFCI to Complete Basis Set limit (CBS)

- 110 transitions
- 18 molecules (H₂O, H₂S, NH₃, HCl, N₂, CO, C₂H₂, C₂H₄, CH₂O, CH₂S, formamide, ketene, methanimine, nitrosomethane, streptocyanine, acetaldehyde, cyclopropene, diazomethane)
- Extrapolate selected-CI to FCI (exFCI)
- Extrapolate exFCI to complete basis set (CBS)
- Test 12 excited-states methods

¹Loos et al, J. Chem. Theory Comput. **14**, 8, 4360-4379, (2018)

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo (\sim 3 non-hydrogen atoms)
- 4. Full Configuration Interaction (FCI)
- 5. Multi-Reference methods (MR-CI, CAS-PT2, DMRG, ...)
- 6. Single reference QMC (\sim 100atoms)
- 7. Post-HF Single-reference methods (CCSD, MP2, ...)
- 8. Density Functional Theory (DFT) (\sim 1000 atoms)
- 9. Density Functional Tight Binding (DFTB) (\sim 10 000 atoms)
- 10. Semi-empirical methods (MNDO, AM1, PM3, PM6, ...). Parameterized on experimental data.

¹Loos et al, J. Chem. Theory Comput. **14**, 8, 4360-4379, (2018)

- Doubly excited states
- Experimentally dark
- Can't be described by conventional methods (TD-DFT)
- 20 vertical transitions
- 14 molecules
- Extrapolate selected-CI to FCI (exFCI)
- Extrapolate exFCI to complete basis set (CBS)

¹Loos et al, J. Chem. Theory Comput. **15**, 3, 1939-1956, (2019)

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo (\sim 3 non-hydrogen atoms)
- 4. Full Configuration Interaction (FCI)
- 5. Multi-Reference methods (MR-CI, CAS-PT2, DMRG, ...)
- 6. Single reference QMC (\sim 100atoms)
- 7. Post-HF Single-reference methods (CCSD, MP2, ...)
- 8. Density Functional Theory (DFT) (\sim 1000 atoms)
- 9. Density Functional Tight Binding (DFTB) (\sim 10 000 atoms)
- 10. Semi-empirical methods (MNDO, AM1, PM3, PM6, ...). Parameterized on experimental data.

- \cdot Doubly excited states
- Extremely difficult with conventional methods (TD-DFT)
- 20 vertical transitions
- 14 molecules
- Extrapolate selected-CI to FCI (exFCI)
- Extrapolate exFCI to complete basis set (CBS)
- Conclusion: CC3 is excellent for single excitations, but still not sufficient for doubles, where multi-configurational methods are required

¹Loos et al, J. Chem. Theory Comput. **15**, 3, 1939-1956, (2019)

- 1. Hylleraas-type methods (1 atom, less than 10 electrons)
- 2. F12-Full Configuration Interaction
- 3. Post-FCI Quantum Monte Carlo (\sim 3 non-hydrogen atoms)
- 4. Full Configuration Interaction (FCI)
- 5. Multi-Reference methods (MR-CI, CAS-PT2, DMRG, ...)
- 6. Single reference QMC (\sim 100atoms)
- 7. Post-HF Single-reference methods (CCSD, MP2, ...)
- 8. Density Functional Theory (DFT) (\sim 1000 atoms)
- 9. Density Functional Tight Binding (DFTB) (\sim 10 000 atoms)
- 10. Semi-empirical methods (MNDO, AM1, PM3, PM6, ...). Parameterized on experimental data.

- Water molecule
- Quantum Monte Carlo on top of selected-CI
- The most accurate energy obtained today (lowest upper-bound)
- Lowest excited states

¹Caffarel et al, *J. Chem. Phys.* **144**, 151103 (2016). ²Scemama et al, *J. Chem. Phys.* **149**, 034108 (2018).

BEYOND FCI

¹Caffarel et al, J. Chem. Phys. **144**, 151103 (2016).

TABLE III. Comparison of nonrelativistic ground-state total energies of water obtained with the most accurate theoretical methods. Energies in a.u.

Clark et al., ²⁰ DMC (upper bound)	-76.4368(4)
This work, DMC (upper bound)	-76.437 44(18)
Almora-Dìaz, ²⁷ CISDTQQnSx (upper bound)	-76.4343
Helgaker et al., ²⁹ R12-CCSD(T)	-76.439(2)
Muller and Kutzelnigg, ³⁰ R12-CCSD(T)	-76.4373
Almora-Dìaz, ²⁷ FCI + CBS	-76.4386(9)
Halkier <i>et al.</i> , 31 CCSD(T) + CBS	-76.4386
Bytautas and Ruedenberg, ³² FCI + CBS	-76.4390(4)
This work, DMC + CBS	-76.438 94(12)
Experimentally derived estimate ²⁵	-76.4389

¹Caffarel et al, J. Chem. Phys. **144**, 151103 (2016).

FIG. 2. Error (in eV) compared to the TBE of Ref. 78 for the three lowest singlet and three lowest triplet exFCI (top) and exDMC (bottom) vertical excitation energies of the water molecule computed with various basis sets. The CBS values (in yellow) are also reported. The error bar corresponds to one standard error.

¹Scemama et al, J. Chem. Phys. **149**, 034108 (2018).

Improve the convergence to CBS limit

- 1. F12-Full Configuration Interaction
- 2. Combine DFT with FCI to cure basis set incompleteness (E. Giner and J. Toulouse, LCT)
- 3. Post-F12-FCI Quantum Monte Carlo
- 4. Use Slater-type atomic orbitals (M. Caffarel)

COMPUTATIONAL DETAILS

- Quantum Monte Carlo calculations with QMC=Chem developed in our group
- New methods and algorithms developed in *Quantum Package*

COMPUTATIONAL DETAILS

- Quantum Monte Carlo calculations with QMC=Chem developed in our group
- New methods and algorithms developed in *Quantum Package*

Quantum Package

- Open-source software developed by LCPQ (Toulouse), LCT (Paris)
- Massively parallel : benchmarks with up to 12 000 cores on Irene (TGCC)
- https://quantumpackage.github.io/qp2/
- ArXiv : 1902.08154
- Fork for periodic systems with A. Benali's group at Argonne National Labs