Some applications of dressing to configuration interaction matrices

Anthony Scemama, M. Caffarel, G. David, Y. Garniron, E. Giner, P.-F. Loos, J.-P. Malrieu,
3 September 2019

LCPQ: Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse
Matrix dressing
Collagen Matrix dressing

Biostep collagen matrix dressing 4” x 4” (1/ea)

$37.07

Free delivery
Arrives by Friday, Sep 6
Or get it by Wed. Sep 4 with faster delivery

More delivery & pickup options

Qty: 1
Add to Cart

Pickup not available

Sold & shipped by Garner Supply

Add to List
Add to Registry
Collagen Matrix dressing

Fig 2. Patient 5, showing the DFU of 2 months' duration at study start (a) and after 3 weeks' treatment with the collagen matrix wound dressing (b)

Fig 3. Patient 6 presented with a wound containing about 30% slough at the start of treatment (a); this devitalised tissue may account for the modest decrease in wound area (b)

Hamiltonian Matrix dressing

- We try to solve: \(\hat{H} |\Psi\rangle = E |\Psi\rangle \)
- Wave function in FCI space: \(|\Psi\rangle = \sum_{i}^{N_{\text{FCI}}} c_i |i\rangle \)
- Project on \(\langle i | : \langle i | \hat{H} |\Psi\rangle = E \langle i |\Psi\rangle \)
- Rewrite: \(\sum_{j}^{N_{\text{FCI}}} H_{ij} c_j - E c_i = 0 \)
Hamiltonian Matrix dressing

- We try to solve: \(\hat{H} |\Psi\rangle = E |\Psi\rangle \)
- Wave function in FCI space: \(|\Psi\rangle = \sum_{i}^{N_{\text{FCI}}} c_i |i\rangle \)
- Project on \(\langle i| \): \(\langle i| \hat{H} |\Psi\rangle = E \langle i|\Psi\rangle \)
- Rewrite: \(\sum_{j}^{N_{\text{FCI}}} H_{ij} c_j - E c_i = 0 \)

CI equation projected on \(\langle i| \)

\[
(H_{ii} - E) c_i + \sum_{j \neq i}^{N_{\text{FCI}}} H_{ij} c_j = 0
\]
Dressed CI Hamiltonian

- There are too many determinants, so we don’t solve exactly the problem
- We choose $N_{\text{det}} |i\rangle$’s on which we project: internal space
- All other determinants (astronomical number) $|\alpha\rangle$: external space
Dressed CI Hamiltonian

- There are too many determinants, so we don’t solve exactly the problem
- We choose $N_{\text{det}} \ket{i}$’s on which we project: internal space
- All other determinants (astronomical number) $\ket{\alpha}$: external space

CI equation projected on $\langle i |$

$$(H_{ii} - E) c_i + \sum_{j \neq i}^{N_{\text{det}}} H_{ij} c_j + \sum_{\alpha} H_{i\alpha} c_\alpha = 0$$
Dressed CI Hamiltonian

Diagonal dressing

\[
\left(H_{ii} + \frac{1}{c_i} \sum_{\alpha} H_{i\alpha} c_{\alpha} - E \right) c_i + \sum_{j \neq i}^{N_{\text{det}}} H_{ij} c_j = 0
\]
Dressed CI Hamiltonian

Diagonal dressing

\[
\left(\tilde{H}_{ii} - E \right) c_i + \sum_{j \neq i}^{N_{\text{det}}} \tilde{H}_{ij} c_j = 0
\]

If the \(c_\alpha\)'s are the FCI coefficients, diagonalizing \(\tilde{H}\) gives

- the FCI energy
- the projection of the FCI eigenstate on the \(|i\rangle\)'s
Dressed CI Hamiltonian

Diagonal dressing

\[
(\tilde{H}_{ii} - E) c_i + \sum_{j \neq i}^{N_{\text{det}}} \tilde{H}_{ij} c_j = 0
\]

If the \(c_\alpha\)'s are the FCI coefficients, diagonalizing \(\tilde{H}\) gives

- the FCI energy
- the projection of the FCI eigenstate on the \(|i\rangle\)'s

Two questions

1. How do I choose the set of \(|i\rangle\)'s ?
2. How do I guess the coefficients \(c_\alpha\) ?
CIPSI dressed by perturbation
CIPSI dressed by perturbation

Two questions

1. How do I choose the set of $|i\rangle$'s?

2. How do I guess the coefficients c_α?

CIPSI dressed by perturbation

Two questions

1. How do I choose the set of $|i\rangle$’s?
 Selected by CIPSI2

2. How do I guess the coefficients c_α?

CIPSI dressed by perturbation

Two questions

1. How do I choose the set of $|i\rangle$’s ?
 Selected by CIPSI\(^2\)

2. How do I guess the coefficients c_α ?
 Obtained by perturbation theory

\[c_\alpha = \frac{\langle \alpha | \hat{H} | \psi \rangle}{E - H_{\alpha\alpha}}, \]

and iterative dressing.

CIPSI dressed by perturbation

Two questions

1. How do I choose the set of $|i\rangle$’s ?
 Selected by CIPSI\(^2\)

2. How do I guess the coefficients c_α ?
 Obtained by perturbation theory

\[
c_\alpha = \frac{\langle \alpha | \hat{H} | \Psi \rangle}{E - H_{\alpha\alpha}},
\]

and iterative dressing.

Bonus question

- How do I make it fast?

CIPSI dressed by perturbation

Two questions

1. How do I choose the set of $|i\rangle$’s ?
 Selected by CIPSI\(^2\)

2. How do I guess the coefficients c_α ?
 Obtained by perturbation theory

\[c_\alpha = \frac{\langle \alpha | \hat{H} | \psi \rangle}{E - H_{\alpha\alpha}}, \]

and iterative dressing.

Bonus question

- How do I make it fast?
 Acceleration using a stochastic algorithm

• Very old idea3

• Start with an internal space

• For each determinant $|\alpha\rangle$, get a perturbative estimate of its contribution to the correlation energy:

$$e_\alpha = \frac{\langle \Psi | \hat{H} | \alpha \rangle \langle \alpha | \hat{H} | \Psi \rangle}{E - H_{\alpha\alpha}}$$

• If $|e_\alpha|$ is large enough, $|\alpha\rangle$ enters in the internal space ($|\alpha\rangle$)

• Diagonalize \hat{H} in the new internal space

• Iterate

Randomized PT2

Idea4

- Avoid the exploration of all $|\alpha\rangle$'s
- Converge within a given statistical error

Properties

- Converges to the exact result in finite time
- Scales as $\sim 1/t^3$
- Massively parallel
- Enables a randomized CIPS5I implementation

Randomized PT2

Pack the $|\alpha\rangle$’s in groups associated with $|i\rangle$’s

\[\mathcal{D} \quad \mathcal{A} \]

\[|I_1\rangle \quad |\alpha_1\rangle \]
\[|\alpha_2\rangle \]
\[|\alpha_3\rangle \]
\[|\alpha_4\rangle \]
\[A_1 \]

\[|I_2\rangle \quad |\alpha_5\rangle \]
\[|\alpha_6\rangle \]
\[|\alpha_7\rangle \]
\[A_2 \]

\[|I_3\rangle \quad |\alpha_8\rangle \]
\[|\alpha_9\rangle \]
\[A_3 \]

\[\vdots \quad \vdots \]

\[E_{\text{PT2}} = \sum_{i} \sum_{\alpha \in \mathcal{A}_i} \frac{\langle \Psi | \hat{H} | \alpha \rangle \langle \alpha | \hat{H} | \Psi \rangle}{E - H_{\alpha\alpha}} = \sum_{i} \epsilon_i \]

\[= \sum_{i} p_i \frac{\epsilon_i}{p_i} = \left\langle \frac{\epsilon_i}{p_i} \right\rangle_{p_i} \]
Stochastic dressing

Stochastically dressed matrix elements:

\[\tilde{H}_{ii} = H_{ii} + \frac{1}{c_i} \sum_{\alpha} H_{i\alpha} c_{\alpha} \]

\[= H_{ii} + \frac{1}{c_i} \sum_{j}^{N_{\text{det}}} \sum_{\alpha \in A_j} H_{i\alpha} c_{\alpha} \]

\[= H_{ii} + \frac{1}{c_i} \sum_{j}^{N_{\text{det}}} \delta_{ij} = H_{ii} + \frac{1}{c_i} \sum_{j}^{N_{\text{det}}} p_j \frac{\delta_{ij}}{p_j} \]

\[= H_{ii} + \frac{1}{c_i} \left\langle \frac{\delta_{ij}}{p_j} \right\rangle p_j \]
Results

Charge delocalization in CuCl$_2$

Two dominant configurations in FCI

1. $^-\text{Cl} \rightarrow \text{Cu}^{2+} \rightarrow \text{Cl}^-$
2. $^-\text{Cl} \rightarrow \text{Cu}^+ \rightarrow \text{Cl} \leftrightarrow \text{Cl} \rightarrow \text{Cu}^+ \rightarrow \text{Cl}^-$

The two configurations differ by a single excitation \rightarrow Very slow convergence of the wave function with CIPSI.6

Results

\[E - E_{\text{FCI}} \text{ (a.u.)} \]

\[N_{\text{det}} \]

- CI-PT2
- CI-sBk
- CI-sBk_0
Multi-reference coupled cluster
Multi-reference coupled cluster

Two questions

1. How do I choose the set of $|i\rangle$’s ?

2. How do I guess the coefficients c_α ?

Two questions

1. How do I choose the set of $|i\rangle$’s?
 CAS + Singles and Doubles

2. How do I guess the coefficients c_α?
Two questions

1. How do I choose the set of $|i\rangle$’s?
 CAS + Singles and Doubles

2. How do I guess the coefficients c_{α}?
 Coupled Cluster Ans"atz, and iterative dressing.

Multi-reference coupled cluster

Two questions

1. How do I choose the set of $|i\rangle$’s?
 CAS + Singles and Doubles

2. How do I guess the coefficients c_α?
 Coupled Cluster Ansatz, and iterative dressing.

Protocol\(^7\)

- Guess the amplitudes of the single and double excitations from the CAS-SD wave function

Multi-reference coupled cluster

Two questions

1. How do I choose the set of $|i\rangle$’s ?
 CAS + Singles and Doubles

2. How do I guess the coefficients c_α ?
 Coupled Cluster Ansätz, and iterative dressing.

Protocol7

- Guess the amplitudes of the single and double excitations from the CAS-SD wave function
- Use these amplitudes to build Ψ_{MRCC}
- $c_\alpha = \langle \alpha | \Psi_{\text{MRCC}} \rangle$
- Diagonalize \tilde{H} and iterate.

Amplitudes

$$\Psi_{\text{CAS-SD}} = \Psi_{\text{CAS}} + \sum_{i \in \text{SD}} c_i |i\rangle$$

$$\tilde{\Psi}_{\text{CAS-SD}} = \left(1 + \sum_{ia} t_i^a \hat{T}_i^a + \sum_{ijab} \left(t_i^a \hat{T}_i^a \right) \left(t_j^b \hat{T}_j^b \right) + t_{ij}^{ab} \hat{T}_{ij}^{ab} \right) \Psi_{\text{CAS}}$$

Least-squares fitting of the CAS-SD wave function\(^8\):

$$\arg \min_{t_i^a, t_{ij}^{ab}} \left| \Psi_{\text{CAS-SD}} - \tilde{\Psi}_{\text{CAS-SD}} \right|$$

Results

Non-parallelism errors (NPE) and maximum errors with respect to the Full-CI potential energy surface (mE_h)

<table>
<thead>
<tr>
<th></th>
<th>CAS-SD</th>
<th></th>
<th>μ-MR-CCSD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPE</td>
<td>Max Error</td>
<td>NPE</td>
<td>Max Error</td>
</tr>
<tr>
<td>C_2H_6</td>
<td>5.1</td>
<td>35.5</td>
<td>3.5</td>
<td>8.3</td>
</tr>
<tr>
<td>F_2</td>
<td>3.8</td>
<td>19.8</td>
<td>1.5</td>
<td>3.8</td>
</tr>
<tr>
<td>C_2H_4 twist</td>
<td>1.5</td>
<td>27.7</td>
<td>0.5</td>
<td>6.5</td>
</tr>
<tr>
<td>BeH_2</td>
<td>2.9</td>
<td>4.1</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>H_2O</td>
<td>1.9</td>
<td>4.8</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>C_2H_4 stretch</td>
<td>2.7</td>
<td>20.0</td>
<td>1.8</td>
<td>6.0</td>
</tr>
<tr>
<td>N_2</td>
<td>1.7</td>
<td>9.0</td>
<td>0.3</td>
<td>2.3</td>
</tr>
<tr>
<td>$F_2 , ^3\Sigma_u^+ (m_s = 1)$</td>
<td>2.6</td>
<td>18.6</td>
<td>1.2</td>
<td>3.3</td>
</tr>
<tr>
<td>$F_2 , ^3\Sigma_u^+ (m_s = 0)$</td>
<td>2.6</td>
<td>18.6</td>
<td>1.1</td>
<td>3.3</td>
</tr>
<tr>
<td>FH</td>
<td>2.6</td>
<td>14.6</td>
<td>1.8</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Explicitly correlated Full CI
F12 scheme

Ansatz

\[
|\psi\rangle = \left(1 + \hat{Q} f_{12} \hat{S}_{xy}\right) |\psi_{FCI}\rangle
\]

- Conventional part (Full-CI): \(|\psi_{FCI}\rangle = \sum_i c_i |i\rangle \)
- Explicitly correlated part: \(|F\rangle = \hat{Q} f_{12} \hat{S}_{xy} |\psi_{FCI}\rangle \)
- \(f_{12}(r_{12}) = -\frac{1}{\lambda} e^{-\lambda r_{12}} \).
- \(\hat{S}_{xy} \) ensures that the cusp conditions are satisfied
- \(\hat{Q} = \hat{1} - \sum_i |i\rangle\langle i| \) ensuring that \(\langle \psi_{FCI}|F\rangle = 0 \)

\[
|\psi\rangle = |\psi_{FCI}\rangle + |F\rangle
\]
Two questions

1. How do I choose the set of $|i\rangle$’s ?

2. How do I guess the coefficients c_α ?
Two questions

1. How do I choose the set of $|i\rangle$’s ?
 Full-CI space
2. How do I guess the coefficients c_α ?
Two questions

1. How do I choose the set of $|i\rangle$'s?
 Full-CI space

2. How do I guess the coefficients c_α?
 $|\alpha\rangle = |F\rangle$, $c_\alpha = 1$
Explicitly correlated Full CI

Two questions

1. How do I choose the set of $|i\rangle$'s ?
 Full-CI space

2. How do I guess the coefficients c_α ?
 $|\alpha\rangle = |F\rangle$, $c_\alpha = 1$

$$|\Psi\rangle = |\Psi_{\text{FCI}}\rangle + |F\rangle$$

$$\tilde{H}_{ii} = H_{ii} + \frac{1}{c_i} \langle i | \hat{H} | F \rangle$$
Implementation

- $\langle i | \hat{H} | F \rangle$ requires three-electron integrals.
- We have used an auxiliary basis for practical reasons

\[
\langle i | \hat{H} | F \rangle = \langle i | \hat{H} \hat{Q} f_{12} \hat{S}_{xy} | \Psi_{\text{FCI}} \rangle = \sum_{\alpha \in \text{CABS}} \langle i | \hat{H} | \alpha \rangle \langle \alpha | f_{12} \hat{S}_{xy} | \Psi_{\text{FCI}} \rangle
\]

- $|\alpha\rangle$'s : Determinants excited in the complementary auxiliary basis set
- $c_{\alpha} = \langle \alpha | f_{12} \hat{S}_{xy} | \Psi_{\text{FCI}} \rangle$
Preliminary results

Helium atom

<table>
<thead>
<tr>
<th>Method</th>
<th>Basis</th>
<th>Total energy (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCI</td>
<td>cc-pVDZ</td>
<td>-2.887 595</td>
</tr>
<tr>
<td></td>
<td>cc-pVTZ</td>
<td>-2.900 232</td>
</tr>
<tr>
<td></td>
<td>cc-pVQZ</td>
<td>-2.902 411</td>
</tr>
<tr>
<td></td>
<td>∞</td>
<td>-2.903 724</td>
</tr>
<tr>
<td>CCSD-F12b</td>
<td>cc-pVDZ-F12</td>
<td>-2.902 251</td>
</tr>
<tr>
<td></td>
<td>cc-pVTZ-F12</td>
<td>-2.903 380</td>
</tr>
<tr>
<td></td>
<td>cc-pVQZ-F12</td>
<td>-2.903 581</td>
</tr>
<tr>
<td>FCI-F12</td>
<td>cc-pVDZ-F12</td>
<td>-2.903 041</td>
</tr>
<tr>
<td></td>
<td>cc-pVTZ-F12</td>
<td>-2.903 000</td>
</tr>
<tr>
<td></td>
<td>cc-pVQZ-F12</td>
<td>-2.903 047</td>
</tr>
</tbody>
</table>
Preliminary results

Lithium atom

<table>
<thead>
<tr>
<th>Method</th>
<th>Basis</th>
<th>Total energy (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCI</td>
<td>cc-pVDZ</td>
<td>-7.466 025</td>
</tr>
<tr>
<td></td>
<td>cc-pVTZ</td>
<td>-7.474 251</td>
</tr>
<tr>
<td></td>
<td>cc-pVQZ</td>
<td>-7.476 373</td>
</tr>
<tr>
<td></td>
<td>∞</td>
<td>-7.478 060</td>
</tr>
<tr>
<td>CCSD-F12b</td>
<td>cc-pVDZ-F12</td>
<td>-7.476 884</td>
</tr>
<tr>
<td></td>
<td>cc-pVTZ-F12</td>
<td>-7.477 461</td>
</tr>
<tr>
<td></td>
<td>cc-pVQZ-F12</td>
<td>-7.477 718</td>
</tr>
<tr>
<td>FCI-F12</td>
<td>cc-pVDZ-F12</td>
<td>-7.479 199</td>
</tr>
</tbody>
</table>
How to dress for success?
How to dress for success?