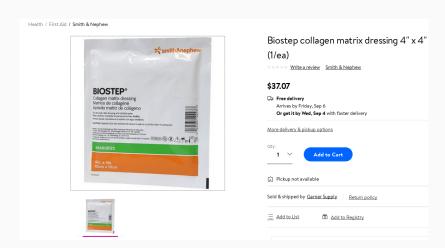
Some applications of dressing to configuration interaction matrices


Anthony Scemama, M. Caffarel, G. David, Y. Garniron, E. Giner, P.-F. Loos, J.-P. Malrieu,

3 September 2019

LCPQ: Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

Matrix dressing

Collagen Matrix dressing

Collagen Matrix dressing

Fig 2. Patient 5, showing the DFU of 2 months' duration at study start (a) and after 3 weeks' treatment with the collagen matrix wound dressing (b)

Fig 3. Patient 6 presented with a wound containing about 30% slough at the start of treatment (a); this devitalised tissue may account for the modest decrease in wound area (b)

¹Haycocks, S. et al, "Collagen matrix wound dressings and the treatment of DFUs", *Journal of wound care*, 22 7, 369-70, 372-5, (2013).

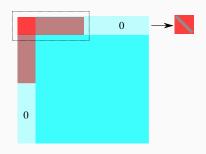
Hamiltonian Matrix dressing

- We try to solve : $\hat{H}\ket{\Psi} = E\ket{\Psi}$
- Wave function in FCI space : $|\Psi\rangle = \sum_{i}^{N_{\text{FCI}}} c_i |i\rangle$
- Project on $\langle i|:\langle i|\hat{H}|\Psi\rangle=E\,\langle i|\Psi\rangle$
- Rewrite : $\sum_{j}^{N_{\text{FCI}}} H_{ij} c_j E c_i = 0$

Hamiltonian Matrix dressing

- We try to solve : $\hat{H}\ket{\Psi} = E\ket{\Psi}$
- Wave function in FCI space : $|\Psi\rangle = \sum_{i}^{N_{\text{FCI}}} c_i |i\rangle$
- Project on $\langle i|:\langle i|\hat{H}|\Psi\rangle=E\langle i|\Psi\rangle$
- Rewrite : $\sum_{j}^{N_{\text{FCI}}} H_{ij} c_j E c_i = 0$

CI equation projected on $\langle i |$


$$(H_{ii}-E)c_i+\sum_{j\neq i}^{N_{\text{FCI}}}H_{ij}c_j=0$$

- There are too many determinants, so we don't solve exactly the problem
- We choose $N_{\text{det}} |i\rangle$'s on which we project : internal space
- ullet All other determinants (astronomical number) $|lpha\rangle$: external space

- There are too many determinants, so we don't solve exactly the problem
- We choose $N_{\text{det}} |i\rangle$'s on which we project : internal space
- ullet All other determinants (astronomical number) |lpha
 angle : external space

CI equation projected on
$$\langle i|$$

$$\left(H_{ii}-E\right)c_i+\sum_{j\neq i}^{N_{\rm det}}H_{ij}c_j+\sum_{\alpha}H_{i\alpha}c_\alpha=0$$

4

Diagonal dressing

$$\left(H_{ii} + \frac{1}{c_i} \sum_{\alpha} H_{i\alpha} c_{\alpha} - E\right) c_i + \sum_{j \neq i}^{N_{\text{det}}} H_{ij} c_j = 0$$

Diagonal dressing

$$\left(\tilde{H}_{ii}-E\right)c_i+\sum_{j\neq i}^{N_{\text{det}}}\tilde{H}_{ij}c_j=0$$

If the c_{lpha} 's are the FCI coefficients, diagonalizing $ilde{H}$ gives

- the FCI energy
- the projection of the FCI eigenstate on the $|i\rangle$'s

6

Diagonal dressing

$$\left(\tilde{H}_{ii}-E\right)c_i+\sum_{j\neq i}^{N_{\text{det}}}\tilde{H}_{ij}c_j=0$$

If the c_{lpha} 's are the FCI coefficients, diagonalizing $ilde{H}$ gives

- the FCI energy
- the projection of the FCI eigenstate on the $|i\rangle$'s

- 1. How do I choose the set of $|i\rangle$'s?
- 2. How do I guess the coefficients c_{α} ?

- 1. How do I choose the set of $|i\rangle$'s?
- 2. How do I guess the coefficients c_{α} ?

²Y. Garniron et al, J. Chem. Phys. 149, 064103 (2018).

- 1. How do I choose the set of $|i\rangle$'s? Selected by CIPSI²
- 2. How do I guess the coefficients c_{α} ?

²Y. Garniron et al, J. Chem. Phys. 149, 064103 (2018).

Two questions

- 1. How do I choose the set of $|i\rangle$'s? Selected by CIPSI²
- 2. How do I guess the coefficients c_{α} ? Obtained by perturbation theory

$$c_{\alpha} = rac{\langle lpha | \hat{H} | \Psi
angle}{E - H_{lpha lpha}},$$

and iterative dressing.

²Y. Garniron et al, J. Chem. Phys. 149, 064103 (2018).

Two questions

- How do I choose the set of |i⟩'s ?
 Selected by CIPSI²
- 2. How do I guess the coefficients c_{α} ? Obtained by perturbation theory

$$c_{\alpha} = rac{\langle lpha | \hat{H} | \Psi
angle}{E - H_{lpha lpha}},$$

and iterative dressing.

Bonus question

• How do I make it fast?

²Y. Garniron et al, J. Chem. Phys. 149, 064103 (2018).

Two questions

- How do I choose the set of |i⟩'s ?
 Selected by CIPSI²
- 2. How do I guess the coefficients c_{α} ?

 Obtained by perturbation theory

$$c_{\alpha} = rac{\langle lpha | \hat{H} | \Psi
angle}{E - H_{lpha lpha}},$$

and iterative dressing.

Bonus question

How do I make it fast?
 Acceleration using a stochastic algorithm

²Y. Garniron et al, J. Chem. Phys. 149, 064103 (2018).

CIPSI

- Very old idea³
- Start with an internal space
- For each determinant $|\alpha\rangle$, get a perturbative estimate of its contribution to the correlation energy:

$$e_{\alpha} = rac{\left\langle \Psi | \hat{H} | lpha
ight
angle \left\langle lpha | \hat{H} | \Psi
ight
angle}{E - H_{lpha lpha}}$$

- If $|e_{\alpha}|$ is large enough, $|\alpha\rangle$ enters in the internal space $(|\alpha\rangle)$
- Diagonalize \hat{H} in the new internal space
- Iterate

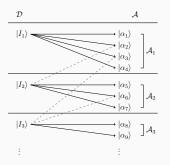
³B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).

Randomized PT2

Idea⁴

- Avoid the exploration of all $|\alpha\rangle$'s
- Converge within a given statistical error

Properties


- · Converges to the exact result in finite time
- Scales as $\sim 1/t^3$
- Massively parallel
- Enables a randomized CIPSI implementation⁵

⁴Y. Garniron et al, J. Chem. Phys. 147, 034101 (2017).

⁵Y. Garniron *et al*, J. Chem. Theory Comput. 156, 3591 (2019).

Randomized PT2

Pack the $|\alpha\rangle$'s in groups associated with $|i\rangle$'s

$$E_{PT2} = \sum_{i}^{N_{det}} \sum_{\alpha \in A_{i}} \frac{\langle \Psi | \hat{H} | \alpha \rangle \langle \alpha | \hat{H} | \Psi \rangle}{E - H_{\alpha \alpha}} = \sum_{i}^{N_{det}} \epsilon_{i}$$

$$= \sum_{i}^{N_{det}} p_{i} \frac{\epsilon_{i}}{p_{i}} = \left\langle \frac{\epsilon_{i}}{p_{i}} \right\rangle_{p_{i}}$$

Stochastic dressing

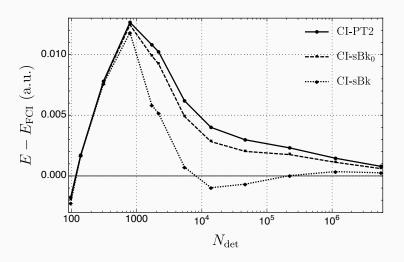
Stochastically dressed matrix elements:

$$\begin{split} \tilde{H}_{ii} &= H_{ii} + \frac{1}{c_i} \sum_{\alpha} H_{i\alpha} c_{\alpha} \\ &= H_{ii} + \frac{1}{c_i} \sum_{j}^{N_{\text{det}}} \sum_{\alpha \in \mathcal{A}_j} H_{i\alpha} c_{\alpha} \\ &= H_{ii} + \frac{1}{c_i} \sum_{j}^{N_{\text{det}}} \delta_{ij} = H_{ii} + \frac{1}{c_i} \sum_{j}^{N_{\text{det}}} p_j \frac{\delta_{ij}}{p_j} \\ &= H_{ii} + \frac{1}{c_i} \left\langle \frac{\delta_{ij}}{p_j} \right\rangle_{p_i} \end{split}$$

Results

Charge delocalization in CuCl₂

Two dominant configurations in FCI


1.
$$-CI - Cu^{2+} - CI^{-}$$

2.
$$-CI - Cu^+ - CI \longleftrightarrow CI - Cu^+ - CI^-$$

The two configurations differ by a single excitation \Longrightarrow Very slow convergence of the wave function with CIPSI.⁶

⁶Caffarel et al, J. Chem. Theory Comput. 10, 12, 5286 (2014).

Results

- 1. How do I choose the set of $|i\rangle$'s?
- 2. How do I guess the coefficients c_{α} ?

⁷E. Giner *et al*, J. Chem. Phys. 144, 064101 (2016).

- 1. How do I choose the set of $|i\rangle$'s? CAS + Singles and Doubles
- 2. How do I guess the coefficients c_{α} ?

⁷E. Giner et al, J. Chem. Phys. 144, 064101 (2016).

- 1. How do I choose the set of $|i\rangle$'s? CAS + Singles and Doubles
- 2. How do I guess the coefficients c_{α} ?

 Coupled Cluster Ansätz, and iterative dressing.

⁷E. Giner et al, J. Chem. Phys. 144, 064101 (2016).

Two questions

- How do I choose the set of |i⟩'s ?
 CAS + Singles and Doubles
- 2. How do I guess the coefficients c_{α} ?

 Coupled Cluster Ansätz, and iterative dressing.

Protocol⁷

 Guess the amplitudes of the single and double excitations from the CAS-SD wave function

⁷E. Giner et al, J. Chem. Phys. 144, 064101 (2016).

Two questions

- How do I choose the set of |i⟩'s ?
 CAS + Singles and Doubles
- 2. How do I guess the coefficients c_{α} ?

 Coupled Cluster Ansätz, and iterative dressing.

Protocol⁷

- Guess the amplitudes of the single and double excitations from the CAS-SD wave function
- \bullet Use these amplitudes to build Ψ_{MRCC}
- $c_{\alpha} = \langle \alpha | \Psi_{\mathsf{MRCC}} \rangle$
- Diagonalize \tilde{H} and iterate.

⁷E. Giner et al, J. Chem. Phys. 144, 064101 (2016).

Amplitudes

$$\begin{split} \Psi_{\mathsf{CAS-SD}} &= \Psi_{\mathsf{CAS}} + \sum_{i \in \mathsf{SD}} c_i \left| i \right\rangle \\ \tilde{\Psi}_{\mathsf{CAS-SD}} &= \left(1 + \sum_{ia} t_i^a \hat{T}_i^a + \sum_{ijab} \left(t_i^a \hat{T}_i^a \right) \left(t_j^b \hat{T}_j^b \right) + t_{ij}^{ab} \hat{T}_{ij}^{ab} \right) \Psi_{\mathsf{CAS}} \end{split}$$

Least-squares fitting of the CAS-SD wave function⁸:

$$\mathop{\mathsf{arg\,min}}_{t_i^a, t_{ij}^{ab}} \left| \Psi_{\mathsf{CAS-SD}} - ilde{\Psi}_{\mathsf{CAS-SD}}
ight|$$

⁸Y. Garniron et al, J. Chem. Phys. 146, 154107 (2017).

Results

Non-parallelism errors (NPE) and maximum errors with respect to the Full-CI potential energy surface (m $E_{\rm h}$)

	CAS-SD		$\mu ext{-}MR ext{-}CCSD$	
	NPE	Max Error	NPE	Max Error
C ₂ H ₆	5.1	35.5	3.5	8.3
F_2	3.8	19.8	1.5	3.8
C ₂ H ₄ twist	1.5	27.7	0.5	6.5
BeH_2	2.9	4.1	1.7	2.1
H_2O	1.9	4.8	0.5	1.3
C ₂ H ₄ stretch	2.7	20.0	1.8	6.0
N_2	1.7	9.0	0.3	2.3
F_2 $^3\Sigma_u^+(m_s=1)$	2.6	18.6	1.2	3.3
$F_2^{\ 3} \Sigma_u^+ (m_s = 0)$	2.6	18.6	1.1	3.3
FH	2.6	14.6	1.8	4.0

F12 scheme

Ansatz

$$|\Psi
angle = \left(1 + \hat{Q}\,\mathit{f}_{12}\hat{\mathcal{S}}_{\mathit{xy}}
ight)|\Psi_{\mathsf{FCI}}
angle$$

- ullet Conventional part (Full-CI) : $|\Psi_{\mathsf{FCI}}
 angle = \sum_{i} c_{i} |i
 angle$
- Explicitly correlated part : $|F\rangle = \hat{Q} \, f_{12} \hat{S}_{xy} \, |\Psi_{\mathsf{FCI}}\rangle$
- $f_{12}(r_{12}) = -\frac{1}{\lambda}e^{-\lambda r_{12}}$.
- ullet \hat{S}_{xy} ensures that the cusp conditions are satisfied
- $\hat{Q} = \hat{1} \sum_{i} |i\rangle\langle i|$ ensuring that $\langle \Psi_{\mathsf{FCI}}|F\rangle = 0$

$$|\Psi
angle = |\Psi_{\mathsf{FCI}}
angle + |F
angle$$

- 1. How do I choose the set of $|i\rangle$'s?
- 2. How do I guess the coefficients c_{α} ?

- 1. How do I choose the set of $|i\rangle$'s ? Full-CI space
- 2. How do I guess the coefficients c_{α} ?

- 1. How do I choose the set of $|i\rangle$'s ? Full-CI space
- 2. How do I guess the coefficients c_{α} ? $|\alpha\rangle=|F\rangle$, $c_{\alpha}=1$

- 1. How do I choose the set of $|i\rangle$'s ? Full-CI space
- 2. How do I guess the coefficients c_{α} ? $|\alpha\rangle = |F\rangle$, $c_{\alpha} = 1$

$$|\Psi
angle = |\Psi_{\mathsf{FCI}}
angle + |F
angle$$

$$\tilde{H}_{ii} = H_{ii} + \frac{1}{c_i} \langle i | \hat{H} | F \rangle$$

Implementation

- $\langle i|\hat{H}|F\rangle$ requires three-electron integrals.
- We have used an auxiliary basis for practical reasons

$$\begin{split} \langle i|\hat{H}|F\rangle &= \langle i|\hat{H}\hat{Q}\,f_{12}\hat{S}_{xy}|\Psi_{\text{FCI}}\rangle \\ &= \sum_{\alpha \in \text{CABS}} \langle I|\hat{H}\,|\alpha\rangle\!\langle\alpha|\,f_{12}\hat{S}_{xy}|\Psi_{\text{FCI}}\rangle \\ &= \sum_{\alpha \in \text{CABS}} \langle i|\,\hat{H}\,|\alpha\rangle\,\langle\alpha|\,f_{12}\hat{S}_{xy}\,|\Psi_{\text{FCI}}\rangle \end{split}$$

- $|\alpha\rangle$'s : Determinants excited in the complementary auxiliary basis set
- $c_{\alpha} = \langle \alpha | f_{12} \hat{S}_{xy} | \Psi_{\mathsf{FCI}} \rangle$

Preliminary results

Helium atom

Method	Basis	Total energy (au)
FCI	cc-pVDZ	-2.887 595
	cc-pVTZ	-2.900 232
	cc-pVQZ	-2.902411
	∞	-2.903 724
CCSD-F12b	cc-pVDZ-F12	-2.902251
	cc-pVTZ-F12	-2.903 380
	cc-pVQZ-F12	-2.903 581
FCI-F12	cc-pVDZ-F12	-2.903 041
	cc-pVTZ-F12	-2.903 000
	cc-pVQZ-F12	-2.903 047
-		

Preliminary results

Lithium atom

Method	Basis	Total energy (au)		
FCI	cc-pVDZ	-7.466 025		
	cc-pVTZ	-7.474 251		
	cc-pVQZ	-7.476 373		
	∞	-7.478 060		
CCSD-F12b	cc-pVDZ-F12	-7.476 884		
	cc-pVTZ-F12	-7.477 461		
	cc-pVQZ-F12	-7.477718		
FCI-F12	cc-pVDZ-F12	-7.479 199		

How to dress for success?

How to dress for success?

