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Exascale



The supercomputing race

Worldwide technological competition

• 1997 : Teraflops/s1

• 2008 : Petaflops/s

• 2020? : Exaflops/s 	1x1011
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• Expected increase of computational power is exponential

• Moore’s Law is ending

• Technological breakthrough needed (quantum computing?)

1flops/s: floating point operations per second
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The supercomputing race

Worldwide technological competition

• 1997 : Terascale : Distributed parallelism

• 2008 : Petascale : Multi-core chips or accelerators

• 2020? : Exascale : Hybrid architectures are inevitable

Peak flops/s improved by 1000×. What about

• Memory capacity per core?

• Memory bandwidth? latency?

• I/O bandwidth? latency?

• Network bandwidth? latency?
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Simple Math

Example: z(i) = a(i) + b(i)× c(i) on Intel Xeon 8168 (2017)

Computational power

• 24 cores

• 2.5 GHz = 2.5 109 cycles/s

• Fused multiply-add (FMA) : 2 flops/FMA

• 512 bit vectors : ×8 flops in double precision

• 24× 2.5 109 × 8× 2 = 960 Gflops/s

Memory bandwidth

• 2666 MHz = 2.666 109 cycles/second

• 8 bytes / cycle

• 6 memory channels

• 2.666 109 × 6× 8 = 128 GB/s
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Simple Math

Example: z(i) = a(i) + b(i)× c(i) on Intel Xeon 8168 (2017)
Peak performance requires an arithmetic intensity of (960 Gflops/s)
/ (128 GB/s) = 7.5 flops/byte

z(i) = a(i) + b(i)× c(i)

• 2 flops

• 3 loads + 1 store : 4× 8 = 32 bytes

• Arithmetic intensity : 2/32 = 0.0625 flops/byte

0.8% of the peak is expected for this loop, if streamed from
memory.
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Simple Math

Example: z(i) = a(i) + b(i)× c(i) on an Nvidia A100 GPU (2020)
A100 GPU

• 9.7 Tflops/s

• 1.555 TB/s

• Required arithmetic intensity on GPU: (9.7 Tflops/s) /
(1.555 TB/s) = 6.2 flops/byte

• PCIe : 64GB/s

• Required arithmetic intensity from RAM: (97 Gflops/s) /
(64 GB/s) = 151.5 flops/byte (!)

1.0% of the peak is expected for this loop, but 1555/128 ∼ 12×
faster than a single CPU.
Streaming from memory is slower than on CPU
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A few words on Quantum Monte Carlo

QMC is known to be “easily scalable”.

• Scalable : YES
We can trivially run many trajetories in parallel

• Easily : NO!

For exascale simulations, we need to be massively parallel and
efficient.
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A few words on Quantum Monte Carlo

Efficiency

• Small systems ≡ small matrices =⇒ low arithmetic intensity

• Very large systems =⇒ linear-scaling algorithms =⇒ very low
arithmetic intensity by nature

Parallelism within a trajectory

• DMC trajectories need to be ergodic, and one trajectory is
sequential by nature

• One trajectory performs ∼10M–100M steps =⇒ one step
∼ 1 millisecond

Exploiting parallelism improve the efficiency is difficult
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Software development



Programming for the exascale

• Progress in quantum chemistry may require codes with new
ideas/algorithms

• New ideas/algorithms are implemented by physicists/chemists

• Exascale machines will be horribly complex

Is it reasonable to ask physicists/chemists to write codes for
exascale machines?
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No: Proof

Vector addition (from https://github.com/jeffhammond/dpcpp-tutorial)
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https://github.com/jeffhammond/dpcpp-tutorial


No
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The dream

A compiler2 that can read an average researcher’s code and
transform it into highly efficient code on an exascale machine.

2Wikipedia: A compiler is a computer program that translates computer code
written in one programming language (the source language) into another
language (the target language) 12



Reality

“AI” is not ready yet . . .
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Reality

. . . so let’s use “NI” and add a human layer between the machine
and the researchers : a bio-compiler
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QMCkl

Quantum Monte Carlo Kernel Library

1. Identify the common kernels in the QMC codes of TREX

2. Agree on a standardized API with scientists and HPC experts

3. Let the library handle data movement between different kernels

4. Scientists propose a reference simple implementation

5. HPC experts bio-compile it in high-performance
implementations

6. Integrate the library in TREX codes
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A very old and successful practice

• BLAS/Lapack (Linear Algebra)

• MPI (Communication)

• FFTW (Fourier transforms)

• OpenMP (shared-memory parallelism)

• OpenGL (3D graphics)

• MPEG (Audio/Video encoding/decoding)

• Video game rendering engines
...
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Benefits of this model

For scientists

• We don’t impose a programming language

• Codes will not die with a change of architecture

Separation of concerns

• Scientists will never have to manipulate low-level HPC code

• HPC experts will not be required to be experts in theoretical
physics
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Conclusion

“QMC can scale easily” assumes that one can efficiently compute
one trajectory.
Using efficiently the hardware to accelerate the realization of one
trajectory is the challenge that will be taken by QMCkl to enable
easy scalability.
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